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A B S T R A C T

Implementing management actions to achieve environmental outcomes requires defining and quantifying
ecological targets, but this is a complex challenge, and there are few examples of how to quantitatively set them in
complex dynamic marine ecosystems. Here we develop a methodology to devise ‘desired state’ for tropical sea-
grasses in Cleveland Bay, northern Australia, in the Great Barrier Reef World Heritage Area. Analysis of diverse
species assemblages was used to define seagrass communities as indicators of the region’s ecological value.
Multivariate regression trees assigned 8000 observations of species presence/absence and habitat characteristics
from 2007 to 2017 into seven community types. Generalized Linear Models were used to assess annual variation
in above-ground biomass of each seagrass community. Reference subsets of the data expressing high biomass and
spatial extent were identified, and desired state was defined as the mean and 95% confidence intervals. This
approach rests on the assumption that seagrass resilience and its ecosystem services are met when the diverse
seagrass communities reach desired state. This method required a data set that spanned a range in seagrass
conditions, but which may have been compromised by a history of pressures. Our method for defining desired
state provides evidence-based targets that can be used within an adaptive management framework that prioritises
and implements management actions.
1. Introduction

Degradation of ecosystems and associated ecosystem services is a
pressing issue for humanity (MEA et al., 2005; Steffen et al., 2015).
Managing natural resources more sustainably has challenges: urbaniza-
tion, climate change, coastal development, consumption, and the
complexity and uncertainty created by multiple pressures (Grech et al.,
2011; Walker and Salt, 2012; Head, 2014). Adaptive management pro-
vides a best practice approach to managing natural resources by linking
management objectives and actions to ecosystem health through appro-
priate indicators (Hallett et al., 2016). A fundamental challenge is
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defining success (Borja et al., 2013): what is the desired state of an
ecosystem that we are aiming to achieve? This ought to be the specific
outcome of management actions, and a target for success when consid-
ered in context of natural disturbances.

‘Desired state’ is defined in this study as an aspirational target for
guiding management decisions. Defining desired state has been identi-
fied as a priority information need for management of the Great Barrier
Reef World Heritage Area (GBRWHA) because of an importance in
standardizing the evaluation of success and for prioritizing remediation
(Great Barrier Reef Marine Park Authority, 2015). Desired state for sea-
grass habitats ideally would be that which maintains ecosystem services
020
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Fig. 1. Map showing the location of Cleveland Bay within the Great Barrier Reef World Heritage Area, the city of Townsville, coral reefs and the Burdekin River - the
largest river influencing water quality in the region.
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(Madden et al., 2009). Seagrass ecosystems are of global significance
because they provide a range of ecological functions such as food for
dugongs and turtles, feed a large proportion of the world’s population by
providing nursery grounds for fisheries species, sequester vast amounts of
carbon, and provide shoreline protection by stabilising sediments
(Mtwana Nordlund et al., 2016; Cullen-Unsworth and Unsworth, 2013;
Unsworth et al., 2018). In some cases, these ecosystem services are used
to define management objectives (Borja et al., 2012; Samhouri et al.,
2012). However, quantifying every aspect of ecosystem services is a
challenging task, especially when the relationship between services,
functions and underlying biodiversity remains poorly understood (Kre-
men, 2005; Barbier, 2014). Not all ecosystem services have been defined,
previously unknown seagrass ecosystem services continue to emerge,
such as reducing disease-causing pathogens [e.g. (Lamb et al., 2017)],
and trade-offs in seagrass ecosystem services exist (Butler et al., 2013;
2

Scott et al., 2018). The services also vary among seagrass genera and
among community types, adding complexity to basing targets on
ecosystem services in multi-specific seagrass habitat (Mtwana Nordlund
et al., 2016; Cullen-Unsworth et al., 2014).

Two of the challenges for defining desired state of complex, dynamic
ecological systems are: 1. choosing the right indicator/s and metrics for
the ecosystem; and, 2. quantitatively defining the desired values of
metrics for the indicator (Wicks et al., 2010). We define ‘indicator’ as
seagrass communities which have unique assemblages, ecological value
and sensitivity to pressures and ‘metric’ as a measurable quality of the
seagrass community [sensu. 22]. Seagrass habitat has properties of
condition and resilience (O’Brien et al., 2017). We define ‘condition’ as
relative quantities of characteristics of the seagrass that can provide
ecological services at the time of assessment. ‘State’ is synonymous with
‘condition’, but the term state is reserved for use in ‘desired state’ for
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clarity. ‘Resilience’ is the capacity to provide those services in the future,
based on being able to retain condition and function in the face of dis-
turbances (O’Brien et al., 2017; Connolly et al., 2018). Ideally, desired
state would encapsulate both condition and resilience, and while the
metrics used to quantify these can overlap (Unsworth et al., 2015),
simple metrics of condition are generally easier to measure and report
against than resilience metrics (Tett et al., 2013; Marb�a et al., 2013).

Spatial extent is one indicator of seagrass habitat availability and the
provision of ecosystem services that it provides, so knowledge of extent is
required before implementation of management strategies to protect
these services (Unsworth et al., 2019). Extent can fluctuate for multiple
reasons, including from pressures that arise from human activities. For
example: it can fluctuate at the deepest limit due to declining water
quality and light limitation (Dennison et al., 1993); in shallow water due
to thermal anomalies and tidal variability (Rasheed and Unsworth, 2011;
Thomson et al., 2015; Massa et al., 2009), which may become more
frequent and extreme in the future (Hoegh-Guldberg et al., 2014); and,
from increasing patchiness associated with disturbances (Cunha et al.,
2005; Kendrick et al., 1999). Extent can also fluctuate naturally,
including due to seasonality in annual (York et al., 2015) and perennial
species (O’Hara et al., 2002). Seagrass extent can be easily integrated
among studies to assess broad-scale change in seagrass habitat, including
in global assessments (Waycott et al., 2009). Seagrass presence/absence,
species composition, and abundance are other common and simple
population-level metrics of seagrass condition and resilience; they
encapsulate the effects of multiple human-induced pressures (Madden
et al., 2009; Martinez-Crego et al., 2008; Marb�a and Duarte, 2010), and
may fluctuate independently of extent (Rasheed and Unsworth, 2011).
These metrics form the basis of most robust studies investigating the
condition and resilience of seagrass meadows [e.g. (Madden et al., 2009;
Personnic et al., 2014)] and are applied in monitoring and assessment
programs within the Great Barrier Reef [e.g. (McKenzie et al., 2019;
Bryant and Rasheed, 2018)].

Determining the desired state of metrics for an indicator is not trivial
(Hallett et al., 2016). This is further exacerbated in systems where there
is large seasonal and/or inter-annual variability, particularly for biotic
indicators with no long-term data sets that encapsulate each metric’s
variability. Desired state should be ambitious yet realistic (Samhouri
et al., 2012; Perrings et al., 2011), and can be based on understanding the
functional cause-effect with environmental conditions (Choice et al.,
2014; Steward et al., 2005; Steward and Green, 2007; Samhouri and
Levin, 2012; Saunders et al., 2017), which likely requires complex
analysis specific to the local system. In many cases, targets have been
based on historical status or on the maximum value in the region (Borja
et al., 2012), providing reference points for management activities,
without being specific to one pressure. Irrespective of the approach,
setting targets requires supporting data.

The objective of this study was to develop a methodology for defining
desired state by selecting indicators and metrics and then defining
desired state of each metric. Our paper describes a case study from
Cleveland Bay in the GBRWHA where the seagrass habitats are complex
because they are dynamic and diverse, but the approach can be applied to
habitats with different ecological attributes and adapted to a range of
spatial scales. Desired state can be used as a reference point against which
to quantitatively assess the influence of human pressures and ‘natural’
variation thereby enabling the implementation of remediation strategies.

2. Methods

2.1. Study area and management objectives

We chose Cleveland Bay as an appropriate study area for imple-
menting a model of adaptive management because of its highly valued
ecological attributes and the well-understood risks to those ecosystem
services (Fig. 1). Cleveland Bay lies within a region of international
significance — the GBRWHA — where the over-arching management
3

objective for biodiversity is “The reef maintains its diversity of species
and ecological habitats in at least a good condition with a stable to
improving trend” (Great Barrier Reef Marine Park Authority, 2015). The
GBRWHA protects up to 10% of the world’s coral reef ecosystems, but
they only cover about 7% of its area. Seagrasses are another of the key
ecological attributes of the GBRWHA by virtue of their extensive area and
the ecosystem services they provide (Great Barrier Reef Marine Park
Authority, 2015), including supporting dugong and green turtle pop-
ulations (Scott et al., 2018; Marsh et al., 2011; Tol et al., 2016).

Seagrass grows throughout most of the bay, from intertidal banks to
deeper subtidal waters (Bryant and Rasheed, 2018). There are seven
species of seagrass in Cleveland Bay: Cymodocea serrulata, Halophila
decipiens, Halodule uninervis, Halophila ovalis, Halophila spinulosa, Tha-
lassia hemprichii and Zostera muelleri subsp. capricorni and the meadows
they form here are a connectivity hotspot in the central GBR (Grech et al.,
2018). Cleveland Bay is affected by discharge from the Burdekin River—
the second largest river basin on Australia’s east coast — as well as
several smaller rivers. These rivers discharge fine sediment, nutrients and
particulate organic matter during the wet season (October to April), the
loads of which have increased in association with agricultural de-
velopments (largely beef grazing and sugarcane cultivation) in the
catchments (Fabricius et al., 2014; Bainbridge et al., 2012, 2018; Kroon
et al., 2012). Discharge from the river has high inter-annual variability in
volume of discharge, sediment and nutrient loads, and the direction of
plume flow depending on prevailing winds (Fabricius et al., 2014; Lewis
et al., 2018). These influence water clarity (Fabricius et al., 2014), and
contribute to changes in seagrass extent and biomass (Collier et al.,
2012a; Petus et al., 2014; Rasheed et al., 2014). Cleveland Bay is also
located adjacent to the city of Townsville presenting multiple threats to
seagrass distribution and abundance in the region, including urban and
port developments (Grech et al., 2011). The region is exposed to
large-scale disturbances from tropical cyclones, and to increasing risk
from heat waves (Hughes et al., 2017; Lough et al., 2018).

We use biomass and extent from observations spanning over a decade
to quantify desired state,which results in desired states that are ambitious,
yet realistic. In general, targets could be based on reference sites or on a
reference periodof time (Samhouri et al., 2012), such as the designation of
the Great Barrier Reef Marine Park in 1981, or on pre-industrial times.
However, reliable historical information on the condition of seagrasses in
the region is available only from2007, anddeveloping targets for any time
prior to that would be based on scant evidence and require a considerable
number of assumptions. Furthermore, the historical predictions could not
be validated. Environmental managers responsible for the GBRWHA
report on the condition and trend of ecological health and prioritise and
implement actions to achieve management objectives in an adaptive
management process (Great Barrier Reef Marine Park Authority, 2019).
We developeddesired state for all communities without being specific to a
management action, but our intention is to apply or adapt them to provide
an evidence-base for management decisions. The implications of this
approach are discussed throughout.

2.2. Define indicators: community types based on species composition and
habitat

Setting seagrass desired state in this region required an approach that
accommodates the relatively high species diversity and dynamic nature
of the seagrass meadows. Therefore, we define the indicators in this study
as not just seagrass, but as different community types of seagrass. As the
community types were then used as the basis to establish desired states
for biomass and spatial extent, it was necessary to exclude data from
years when the species assemblages were altered due to the impacts of
large events as described below.

2.2.1. Available data
Seagrass biomass and species composition were assessed as part of

routine monitoring of benthic habitats for the Port of Townsville.



Table 1
Seagrass species and habitat data used to determine desired state, including collection method, units, data source, resolution, and whether the data was used as a
predictor or response variable.

Label Description Methods Units Source Data resolution Predictor/response

Seagrass species presence/absence data
P/A Seagrass species

presence/
absence

Assessed in three 50 � 50 cm quadrats per
‘site’ deployed from helicopter, camera
drops, or free diving depending on water
depth and sea conditions.

0/1 Summarised in
Bryant and Rasheed
(2018)

Annual data
518–1209 sites/year, median
¼ 626

Response (to habitat
predictors)

Habitat data
Seddom Dominant

sediment type
Recorded in the field and aggregated into
broad categories for this analysis based on
the dominant sediment type. Coarse Sand,
Mud, Reef, Rock, Rubble, Sand.

n.a. Bryant and Rasheed
(2018)

Annual data
518–1209 sites/year, median
¼ 626

Predictor

WCI Water clarity
index

Remote sensing imagery was used to derive a
categorical index of water clarity, ranging
from 1 (lowest) to 7 (highest). Categories
1–4 represent water that has high levels of
total suspended solids, chlorophyll a and
coloured dissolved organic matter, leading
to high light attenuation coefficients, and
low clarity.

# weeks Petus et al. (2016) Annual data. Number of weeks
(out of 22 weeks) in the
previous wet-season (from
December to April) that were
category 1-4

Predictor

Depth
class

Depth class Habitat classification developed in Carter
et al. (2018), a spatially-explicit habitat
classification scheme developed for the
entire GBR based on water depth and water
clarity (using the techniques described for
WCI). Only depth categories were relevant to
Cleveland Bay analysis: Coastal intertidal
and Coastal subtidal (shallow and deep
combined).

n.a. Carter et al. (2018) Single polygon file Neither. Used to
allocate sites for
analysis in subtidal
or intertidal models.

RelExp Relative tidal
exposure index

Extracted from the intertidal extents model
raster (ITEM v1.0), where 0 is never
exposed, and 1–9 is exposed at increasing
amounts of time where 1 ¼ exposed at the
lowest 0–10% and 9 ¼ exposed at highest
80–100% of observed tidal range.

Relative
scale

Geoscience Australia
(2017) and Carter
et al. (2018)

Single raster file.
Uses all Landsat observations
(5, 7, 8) for Australian coastal
regions, 1987–2015

Predictor (intertidal
analysis only)

Depth Colonisation
depth

Depth of the sampling site as determined
from Beaman (2010) supplemented by other
sources as summarised in (Carter et al.,
2018).

m (metres
below mean
sea level)

Carter et al. (2018) Single raster file Beaman
(2010) and polygon shapefile
Carter et al. (2018)

Predictor (subtidal
analysis only)

Define metrics
Biomass Above-ground

biomass
Estimated using a calibrated visual
estimation technique during the peak
growing season (September to November)
for each species at each site.

g DW m-2 Summarised in
Bryant and Rasheed
(2018)

Annual data
424–1101 sites/year, median
¼ 592

Response (to year)

Spatial
Extent

Area of seagrass
habitats

Determined by GIS spatial extent analysis of
site data for each seagrass community type
collected during the peak growing season
(September to December).

Ha Derived from habitat
assessment sites in
Bryant and Rasheed
(2018)

Annual data Response (to year)

Identify desired state
Year Survey year Factor Bryant and Rasheed

(2018)
Annual data Predictor
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Seagrass biomass and species composition was visually assessed at least
annually between 2007 and 2017 (Bryant and Rasheed, 2018). The data
is made up of 8122 observations (518–1209 sites/year, median ¼ 626).
Sampling was stratified into discrete seagrass meadows and non-seagrass
areas in the bay, and the distribution of sites covered most of Cleveland
Bay during broad-scale surveys in 2007, 2013, and 2016. A subset of
discrete seagrass monitoring meadows was surveyed in the other years.
Sites (an area of 5m radius) were haphazardly allocated within each
stratified area to ensure good spatial coverage. This method ensured all
seagrass monitoring meadows were assessed each year regardless of the
annual spatial change. The number of sites needed to represent the
variability and patchiness of the communities and detect change in
biomass in the original monitoring program was determined by power
analysis. Above-ground biomass was visually assessed within three
replicate quadrats (50 � 50 cm) randomly placed within each site.
Visually estimated above-ground biomass is a widely-used non-destruc-
tive method that has been applied in high-precision time-series analysis
(Aragones and Marsh, 2000; Rasheed, 1999, 2004) and meadow scale
change assessments (Rasheed and Unsworth, 2011; McKenna et al.,
4

2015). The visual assessment is calibrated for each individual observer
against harvested biomass samples at each time of sampling. Biomass for
the site was calculated from an average of the three quadrats and scaled
up to grams dry weight m-2 (g DW m-2). Species composition was the
percent contribution of each species to mean biomass within the three
quadrats. When defining community types species data was simplified to
presence/absence (Table 1).

Habitat requirements including depth range, sensitivity to changing
water quality, the benthic substrate suitable for growth, and the fre-
quency of exposure to air at low tide for intertidal communities vary
among species (Lee et al., 2007; Erftemeijer and Robin Lewis, 2006;
Collier et al., 2016; Waycott et al., 2004; Shafer et al., 2007), and lead to
differences in species distributional patterns (Waycott et al., 2004, 2005;
Coles et al., 2009). Amongst water quality stressors, light limitation is
regarded as the primary cause of seagrass loss in the region, and exposure
to turbid flood water and subsequent resuspension of sediments has been
linked to declines in seagrass meadow area and biomass in the GBRWHA
and Cleveland Bay (Collier et al., 2012a; Petus et al., 2014, 2016).
Habitat requirements may also overlap among species, resulting in
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multi-species meadows such as those found in Cleveland Bay (Bryant and
Rasheed, 2018). Habitat characteristics, such as sediment type, tidal
exposure, water quality measured as the clarity of water and/or depth,
were therefore used to classify seagrass species assemblages into com-
munity types, with separate analyses for intertidal and subtidal sites.

Benthic sediment type at each site was visually assessed and defined
according to broad categories (e.g. mud, sand) and listed from most to
least dominant; dominant sediment (Seddom) was defined as the most
dominant of these categories at a site (Table 1). Water clarity at each site
was defined by a Water Clarity Index (WCI) and calculated as the fre-
quency (number of weeks) of exposure to turbid water during the pre-
vious wet season which spans 22 weeks from December to April in each
‘water year’. Turbid water was identified from water colour as brownish
to brownish-green waters in MODIS true colour satellite images and
processed according to �Alvarez-Romero et al. (2013) and Petus et al.
(2019) as part of routine annual water quality monitoring for the
GBRWHA (Waterhouse et al., 2018). Sites were defined as intertidal or
subtidal using the habitat classification of Carter et al. (2018). Depth
below mean sea level was included as a predictor in the subtidal analysis
only. The relative frequency of intertidal exposure was included as a
predictor in the intertidal analysis only (Table 1).

2.2.2. Define community types
Seagrass species presence/absence (P/A) was used as a response

variable to assign the seagrass at each site into a community type with
unique species assemblages using multivariate regression trees (Table 1).
While there are several other methods for defining species assemblages,
multivariate regression trees result in discrete site groups (with distinct
environmental affinities) allowing prediction and inference about sites
where there is environmental data but no seagrass data. We used pres-
ence/absence from each site rather than biomass, which resulted in the
community type being defined based on the frequency of occurrence of
each species. Regression trees (Breiman et al., 1984; Clark et al., 1992)
are a machine-learning method for constructing prediction models and
do not include a priori assumptions about the relationships between the
response and predictor variables. Multivariate Regression Trees (MRTs
(De’ath, 2004);) can be used to describe and predict relationships be-
tween multiple species and habitat characteristics (De’ath, 2002). The
parameters leading to the splits in the MRTs are interpreted by stepping
down the tree. Once the tree has finished splitting the data, the bottom
‘leaves’ of the tree are nodes that we refer to as community types. As the
aim was to cluster the sites spatially (not predict the abundance at a site
at a point in time), we did not include ‘year’ as a factor in the model.
Instead we aimed to categorise where each seagrass species is found, on
average, through time.

To define seagrass community types, theMRTwas fitted to data for all
years excluding 2009 to 2012. These datawere removed from the analysis
because our aimwas to identify community types that could be used to set
seagrass desired state. There was loss of seagrass area and biomass in this
period most likely from significant rainfall and the subsequent discharge
of sediment and nutrients, which led to low water clarity and low benthic
light levels (Bryant and Rasheed, 2018; Petus et al., 2014). We removed
these years from the analysis to avoid defining seagrass community types
based on data that overwhelmingly represented a significant environ-
mental impact, rather than more nuanced habitat conditions (e.g. sedi-
ment type, water quality) likely to drive community types in relatively
normal years and desired state years. To check the effect of this decision,
the MRTs were run on the data from years 2009 to 2012 separately. The
species assemblages in those years were disproportionally dominated by
colonising species indicative of a disturbance event, Halophila ovalis at
intertidal and Halophila decipiens at subtidal sites, leading to an overly
simple community classification that was not appropriate for setting
desired state. The MRTs were fitted to the intertidal and subtidal sites
separately. This analysis identified nine potential seagrass community
types, which have been numbered one to nine and the characteristics of
these communities are defined in the results.
5

The models were fitted using the mvpart package (De’ath, 2004) in R
(available in archive form on CRAN, https://cran.r-project.org). Explor-
atory analyses and sensitivity testing of the MRTs included: MRTs on
biomass, which revealed a similar classification to the seagrass species
presence/absence classification (Appendix A); Separate MRTs for each
year to test the sensitivity of the community classifications to “good” and
“bad” years (i.e. when there were significant rainfall events leading to
poor water clarity and low benthic light) years; MRTs for all years
combined and not just the “good” years; and, single regression trees for
individual species.

The data from 2007–2008 and 2013–2016 was used in the initial
analysis to define communities, while the 2017 data was included as it
became available. This provided an opportunity to demonstrate how the
fitted model can predict membership to a community type for additional
data.

2.2.3. Determine spatial extent of each community
The spatial extent of each of the nine community types was assessed

annually from 2007 to 2017. The data set is for observations collected
from September through to December as this is the peak growing season
for seagrasses in the region, and the time-period in which most of the
surveys were conducted. Spatial analysis was also restricted to the
smaller survey extent of meadows monitored annually, so the results
were not biased in years which included the bay-wide surveys and
increased sampling effort. (2007, 2013 and 2016). This means that
spatial extent desired state could not be determined for deep subtidal
community 1 as determined by the MRT classification. Survey extent was
calculated from the concave hull (polygon enveloped) of all points based
on spatial density in six different sub-regions in the Bay in each year
(Geoffrey Bay, Nelly Bay, Cockle Bay, Shelly Beach, Rowes Bay/The
Strand, and South Cleveland Bay, which are shown in the results in
Fig. 5). The sub-regions were separated by parts of the bay having no
seagrass, or not surveyed. Thiessen polygons were created from site data
to geostatistically define the area of seagrass in each sub-region for each
year using seagrass presence/absence (0/1 data), clipping the polygons
to each sub-region’s survey extent, then removing polygons where sea-
grass was absent.

The area of each seagrass community type was determined by
calculating the area of the remaining Thiessen polygons (in hectares)
then summing these according to community type, sub-region and year.
Survey extent (concave hull) analysis was conducted in QGIS v. 3.4.0
(QGIS Development Team, 2018); all other spatial analyses were con-
ducted in ArcMap v.10.4.1 (ESRI, Redlands, CA).

2.2.4. Re-assess community types
There were nine communities identified; however, the species

composition and biomass of communities 6 and 7, and of communities 8
and 9 were very similar, varying in their classification between years
based only on dominant sediment type or the water quality index,
respectively. This led to an inter-annual switch in the occurrence of these
community types between years, and was associated with inter-annual
fluctuations in the biomass of each community type. Therefore, these
community types were re-classified into community 6/7 combined and
community 8/9 combined, resulting in seven seagrass communities
identified in Cleveland Bay. Combining these very similar communities
also meant we could do a more robust analysis on desired state biomass
because the number of samples was increased.

2.3. Select metrics

Above ground biomass and geostatistical spatial extent were selected
as metrics for setting seagrass desired state because there is substantial
evidence that these are ecologically-important attributes of seagrass
condition, and are sensitive to environmental change over the spatial-
temporal scale of this study, including to the pressures occurring in the
region (Marb�a et al., 2013; Bryant and Rasheed, 2018; Petus et al., 2014;

https://cran.r-project.org


Fig. 2. Multivariate regression tree (MRT) and seagrass communities classified using presence/absence data for a. subtidal sites, b. intertidal sites and c. the spatial
distribution of communities in Cleveland Bay, 2007, 2008, 2013–2016. The number below each community is the count of observations that fall into that community.
The histogram shows the frequency of occurrence for each species in that community with the height of the bar representing the frequency that each species was
observed in that assemblage. The coloured dots represent unique communities one to nine (later grouped into seven communities with 6/7 and 8/9 combined). The CV
Error is the cross-validated relative error and is the best indication of the error here.
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Table 2
Frequency of occurrence of each species within the nine community types (Com.) identified using multivariate regression tree analysis on site data. Bold type indicates
most common species.

Com. C. serrulata H. decipiens H. ovalis H. spinuolsa H. uninervis T. hemprichii Z. muelleri

1 0.07 0.14 0.12 0.37 0.30 0.00 0.01
2 0.15 0.05 0.15 0.13 0.49 0.00 0.02
3 0.06 0.00 0.13 0.00 0.47 0.01 0.33
4 0.01 0.00 0.10 0.00 0.16 0.00 0.72
5 0.07 0.00 0.42 0.00 0.24 0.02 0.26
6 0.26 0.01 0.11 0.03 0.56 0.03 0.01
7 0.12 0.00 0.13 0.02 0.64 0.01 0.08
8 0.24 0.03 0.23 0.01 0.39 0.02 0.08
9 0.21 0.02 0.13 0.00 0.30 0.00 0.34
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Rasheed et al., 2014; McMahon et al., 2013). They are also measured in
many monitoring programs, enabling this method to be applied in other
regions.

2.4. Identify desired state

2.4.1. Desired state of above-ground biomass
Once the species assemblages were defined using the MRTs, temporal

trends in above-ground biomass were examined. Generalized Linear
Models (GLMs) were fitted using Tweedie models (Tweedie, 1984). The
Tweedie models were compared to Hurdle models (Mullahy, 1986),
which performed similarly. Uncertainty was estimated by calculating the
95% confidence interval (CI) of model predictions for each year.

For the determination of above-ground biomass desired state within
each community, years with low sample size (number of sites<15) were
excluded due to the high variability in biomass estimates for these years.
We aimed to set ambitious targets, and acknowledged that the ecological
integrity of the bay over the period of time in which data was available
was likely to be somewhat compromised relative to a non-impacted
baseline. Therefore, a reference data set was compiled for each com-
munity from years when biomass was highest. Specifically, the reference
data was biomass in the year where maximum seagrass biomass was
present, plus those years where biomass was not significantly different
from the maximum year usingWald post hoc comparisons. In three of the
communities (3, 4 and 5), the reference data set was compiled from three
to four years of data for each community. In the remaining four com-
munities (1, 2, 6/7 and 8/9), maximum biomass occurred in 2007, and
this was significantly different from all other years. Where this occurred,
2007 was considered an outlier year that was unlikely to represent an
achievable desired state, and the reference data set was therefore based
on the mean of 2007 and the second and third greatest biomass years.
Desired state was determined as average above-ground biomass of the
reference data for each community, bounded by the 95% confidence
intervals. All plots were created using the ggplot package in R (Wickham,
2016).

2.4.1. Desired state of spatial extent
Spatial extent desired state was defined as the mean total seagrass

spatial extent (i.e. all communities combined) based on the three years
where extent was at its maximum. This was calculated separately for each
sub-region because the large range in spatial extent among sub-regions,
from tens to thousands of hectares, meant results from the largest
meadows, e.g. South Cleveland Bay, masked trends in the sub-regions
with small meadows. Desired state mean total extent (hectares) and
95% CI for those three best years, plus the contribution of each com-
munity to area desired state for those years, were calculated using the
bias-corrected accelerated bootstrap method (repeated 10,000 times)
with the boot package in R (Canty and Ripley, 2017; Davison and Hink-
ley, 1997). This approach ensures that the spatial coverage of community
types, not just total extent, contributes to desired state.

We could not calculate a desired state of extent for subtidal com-
munity 1, as sampling only ever occurred during the broad-scale surveys.
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Shelly Beach was removed from the calculation of desired state for both
subtidal communities, as even very shallow subtidal sites were only
surveyed during broad-scale surveys.

3. Results

Intertidal areas within the Bay supported a greater number of seagrass
community types, and the habitat conditions associated with these was
more complex. This demonstrates that the common grouping of seagrass
habitat as “intertidal” likely underestimates the complexity of conditions
and community types in the intertidal zone. The species presence/
absence MRTs identified two subtidal communities (communities 1 and
2) and seven intertidal communities (communities 3–9) (Fig. 2, Table 2).
All four habitat characteristics were used by the MRTs to determine the
different communities: Seddom, RelExp, WCI and Depth. C. serrulata,
H. ovalis, and H. uninervis occurred in all seagrass communities with
varying levels of frequency. Themost common species were: Z. muelleri in
communities 4 and 9, H. ovalis in community 5, H. spinulosa in commu-
nity 1, and H. uninervis in communities 2, 3, 6, 7, and 8 (Table 2).
T. hemprichii was absent in the two subtidal communities and in the two
Z. muelleri-dominated intertidal communities, and occurred at low fre-
quency in the remaining intertidal communities. Both Z. muelleri and
T. hemprichii occurred almost exclusively in the intertidal habitats in
Cleveland Bay and did not overlap with H. spinulosa and H. decipiens
which were more dominant in the deepest community. For subtidal
seagrass, Depth was the only explanatory variable dividing communities
(Fig. 2a). In water shallower than 3.5m the community was dominated by
H. uninervis, while the community deeper than 3.5m was dominated by
H. spinulosa.

For intertidal seagrass, the first split in the MRT was relative exposure
with communities 3–5 exposed relatively more (>1.5 out of 9) than
communities 6–9 (<1.5 out of 9) (Fig. 2b). Sediment was the next split,
with communities defined predominantly on whether they grew in mud
comparedwith all other sediment types (Fig. 2b). Mud communities were
dominated by Z. muelleri (communities 4 and 9), H. ovalis (community 5),
and H. uninervis (community 8), while H. uninervis was always the
dominant species in the three non-mud communities (3, 6, and 7). Mud
communities were further defined according to the WCI (Fig. 2b). On the
right hand side, there is a second split based on sediment where habitat
that has sand substrate separates from habitat that is reef, rock or rubble.
Both of these are mixed communities dominated by H. uninervis. On the
far right, the mud/coarse sand sites were further split based on the WCI
(Fig. 2b).

The MRT was repeated with above-ground biomass (square root
transformed) as the response variable instead of presence/absence. The
splits in the tree (Appendix A) were almost exactly the same as the
presence/absence MRT therefore, the results appear to be quite robust to
changes in the choice of response variable. The only small differences
were that in subtidal habitat, the depth leading to the split is 3.3m
compared to 3.5m. At intertidal sites community 6 was combined with
community 7, as the final split based on sediment was not important
when using the biomass data.



Fig. 3. Annual mean above-ground biomass (�95% CI) for Cleveland Bay seagrass communities, 2007–2017. Greyed values were not included in Tweedie GLM
statistical analyses due to low sample size for that year. Seagrass above-ground biomass desired state (solid blue line) with upper and lower 95% CIs (dashed blue
lines). Asterisks indicate years used to form the reference data for setting desired state. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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Fig. 4. Temporal change in spatial extent of Cleveland Bay seagrass communities 2, 3, 4, 5, 6/7 and 8/9. Community 1 (deep subtidal) excluded, as sampling only ever
occurred during broad-scale surveys. Extent shown for every second year to demonstrate change overtime.
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The presence/absence MRT was then applied to the 2017 data,
demonstrating that the model can be used to predict community types
and the distribution of community types is similar to the preceding years
(Appendix A; Figure A2).

3.1. Above-ground biomass desired state

Above-ground biomass desired state in the shallow subtidal com-
munity 2 (10 gDW m-2), which was dominated by H. uninervis, was
double that of deep subtidal community 1, which has a greater domi-
nance of Halophila species (Fig. 3, Table 3). For intertidal communities,
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above-ground biomass desired state was lowest for community 5 (~6
gDWm-2), the high exposure intertidalH. ovalis dominated community at
Magnetic Island. Intertidal community desired state biomass was greatest
for the high exposure Z. muelleri dominated community 4 along the
mainland coast (~34 gDW m-2), and the low exposure communities 8
(H. uninervis with C. serrulata) and 9 (Z. muelleri with C. serrulata) (~33
gDW m-2) (Fig. 3, Table 3).

Above-ground biomass of all communities significantly varied among
years. The highest biomass was observed in 2007 or 2008 in all com-
munities, while biomass reached high levels also in 2017 or 2014 (Fig. 3).
The lowest biomass was observed in 2011, but very low biomass was



Fig. 5. Annual extent (hectares) for Cleveland Bay seagrass communities in each sub-region, 2007–2017. For each sub-region, bar plots (left) show seagrass extent
desired state (solid blue line) with upper and lower 95% CIs (dashed blue lines); dot plots (right) show expected contribution of each seagrass community to extent
desired state (�95% CIs). Colour coding of community types match those presented in Fig. 4. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Table 3
Seagrass community, dominant habitat requirement (first split in the tree is
either depth or tidal exposure), dominant species (most frequently recorded, see
Fig. 4), and above-ground biomass desired state (mean with 95% confidence
intervals).

Depth Community Depth/
exposure

Dominant
species

Desired state
biomass (gDW m-

2)

Mean 95% CI

Subtidal 1 Deep (>3.5m) H. spinulosa 4.8 3.8, 5.8
2 Shallow

(�3.5m)
H. uninervis 10.1 8.3,

11.8

Intertidal 3 High exposure
(>1.5)

H. uninervis 12.4 8.7,
16.0

4 High exposure
(>1.5)

Z. muelleri 34.4 30.2,
38.6

5 High exposure
(>1.5)

H. ovalis 5.9 4.4, 7.5

6/7 Low exposure
(<1.5)

H. uninervis 10.2 8.9,
11.6

8/9 Low exposure
(<1.5)

H. uninervis 33.1 29.0,
37.1
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observed from 2009 to 2012. The largest variation in biomass occurred in
the communities that also reached the highest biomass. These were
community 2 (shallow subtidal H. uninervis dominated), community 4
(high exposure intertidal, predominantly Z. muelleri community) and
community 8/9 (low exposure intertidal, mixed species). The lowest
variation in biomass occurred in high exposure intertidal communities 3
and 5 (Fig. 3).

3.2. Spatial extent desired state

The years used to form the reference data set for extent differed
among sub-regions, but most frequently included the years 2007, 2014,
2016 and/or 2017 (Fig. 5). The years 2010–2013 were not used to define
extent desired state for any sub-region, with extent particularly low in
10
2011 (Figs. 4, 5). Extent desired state varied greatly among sub-regions,
ranging from 4323 ha in the large South Cleveland Bay meadow, to 7.7
ha in the small Nelly Bay meadow (Fig. 4). The maximum seagrass extent
was limited largely by local topography, such as the reef-top meadow at
Cockle Bay. Extent desired state was greatest for South Cleveland Bay
where shallow subtidal community 2 was a dominant contributor to
seagrass extent (Figs. 4, 5).

Each of the sub-regions had a unique combination of seagrass com-
munity types. Community 6/7 was present in every sub-region, and was
the most extensive community in Geoffrey Bay, Nelly Bay, Shelly Beach,
and the intertidal component of Rowes Bay. Communities 8 and 9
contributed most to extent desired state at Cockle and South Cleveland
Bays. Intertidal communities with high intertidal exposure were
restricted to a narrow band along the shoreline so contributed least to
extent desired state. Community 4 contributed to extent desired state
only on the mainland (Rowes Bay, Shelly Beach, and South Cleveland
Bay), while community 5 was only recorded in Cockle and Geoffrey Bays
at Magnetic Island. Community 3 occurred in all sub-regions but was
always a minor contributor to seagrass extent (Figs. 4, 5).

4. Discussion

Using two metrics of seagrass condition measured over more than a
decade we present an approach to setting desired state for seagrass
communities in a complex and dynamic tropical habitat. Setting targets is
one of the most critical, yet challenging aspects of assessing ecological
status (Samhouri et al., 2012) but they are needed to assess the progress
towards meeting management objectives when considered in context of
natural disturbances. We discuss the benefits and limitations of this
approach, and considerations for broader assessment of seagrass desired
state.
4.1. Setting desired state

There are many attributes that determine whether seagrass habitat
has reached a desired state, including both its condition and resilience.
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However, environmental managers often require simple indicators and
metrics that can provide information on both. Simple condition metrics
such as above-ground biomass and extent are important criteria because
they are the sum effect of multiple processes (Daan, 2005; Roca et al.,
2016), and can be proportional to provisioning of ecosystem services
(Scott et al., 2018). They also overlap with some of the metrics recom-
mended for assessment of resilience, which would also require additional
metrics not included in our study (O’Brien et al., 2017; Unsworth et al.,
2015). They respond to a diverse range of environmental pressures
including light availabilty, water temperature, and toxicant concentra-
tions (Chartrand et al., 2016; Collier et al., 2012b; Negri et al., 2015),
plus biological processes and pressures (Scott et al., 2018). By contrast,
when screening for a specific stress other metrics such as physiological
measures can be used (McMahon et al., 2013; Roca et al., 2016; Schliep
et al., 2015; Collier et al., 2017), but these are not as relevant to the
time-scales considered here. Seagrass communities provide many
ecosystem services but different species and community types vary in
their contribution to each of the services because of features such as
biomass and other structural characteristics (Mtwana Nordlund et al.,
2016). Attempting to define desired state for each of those functions
would require substantial quantitative information on ecosystem services
that is not available. Hence we need to adopt the assumption that resil-
ience and ecosystem function of the habitat will be preserved if desired
state of biomass and extent is met in all community types (Tett et al.,
2013), which is acknowledged as unsatisfactory if maintaining resilience
is the overarching management objective. We therefore recommend in-
clusion of complimentary resilience metrics such as population structure
and measures of sexual reproduction – an inclusion that is not possible at
this stage owing to a lack of data.

Pollutant discharge into the GBRWHAhas increased following mining
and agricultural development that commenced in the 1850s (Bainbridge
et al., 2018); the effect of these activities on seagrass communities in
Cleveland Bay is not directly known. The earliest comprehensive seagrass
surveys conducted within the area were in the 1980s [summarised in 99],
but these were snap-shot surveys and cannot be used to gauge trends in
seagrass condition since then. However, it is in the opinion of authors
engaged in those early surveys that the maximum level of the metrics
observed in the 11-year data set (i.e. desired state), is not dissimilar to
observations from the 1980s, but the amount of variability at that time is
not known (R. Coles pers com, 2015). In the absence of longer-term
historical information on seagrass habitat condition, we have used
available data from the previous 11 years. During this period, there was
extensive declines in biomass and extent associated with multiple im-
pacts, including flooding and cyclones (McKenzie et al., 2019; Bryant and
Rasheed, 2018; Petus et al., 2014). Therefore, the highest levels of
biomass and areal extent was used as a reference data set to define
desired state, which has resulted in targets that are realistic, but also
ambitious.

The region is affected by multiple threats, and targets that are linked
to any one anthropogenic pressure (e.g. river discharge), may not be
relevant for another pressure (e.g. thermal stress). River discharge can
affect water clarity (Fabricius et al., 2014) in which case targets for
discharge may be focussed on subtidal or deepwater seagrass commu-
nities growing near the edge of light requirements (Choice et al., 2014)
and/or against other habitats that are sensitive to turbidity including
coral reefs. The time-scales over which these environmental pressures
affect seagrass condition can range fromweeks andmonths (Collier et al.,
2012a; Chartrand et al., 2016) to annual or multi-annual (Lambert et al.,
2019), which influences how targets are used or interpreted for man-
agement actions. Therefore, indicators and metrics needed to meet
sensitivity, responsiveness, and specifity requirements to pressures must
be considered (Lambert et al., 2019; Rice and Rochet, 2005). There may
be a need to adapt, or even develop complimentary targets that are
specific to these time and space-scales for example, defining levels of
change (loss or gain) by gradients in pressure (Collier et al., 2012a, 2016;
Lambert et al., 2019).
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Pressure-response models can be used to prioritise investment into
management strategies to protect seagrass condition (Choice et al., 2014;
Saunders et al., 2017; Adams et al., 2015) and to identify the cause of any
failure to meet desired state. Also needed is the capacity to forecast the
trajectories of ecosystems subject to multiple simultaneous pressures and
changes. Ecological thresholds and environmental condition boundaries
should be identified, and the consequences of crossing them identified as
far as possible (Collier et al., 2016; Strange, 2007). However,
pressure-response models require locally-specific data on pressures at a
scale that is complimentary to the scale of information on seagrass con-
dition and response to the pressures (Wicks et al., 2010; Adams et al.,
2015). We have tested an approach to setting desired state that is not
constrained by these modelling needs, but which nonetheless can be used
for testing management scenarios.

Our study highlights some limitations and considerations when
applying this approach in other areas:

1. Historical data required. This approach requires a relatively large his-
torical seagrass data set that captures decadal-scale change. In
Cleveland Bay, there was large variability in the biomass and extent
metrics that enabled us to develop a reference dataset based on years
when biomass and extent were high, and significantly different from
other years. An independent test of the targets can occur within an
adaptive management cycle as more data is collected in annual sur-
veys. In less or more dynamic regions, it may be more difficult to
identify an appropriate reference data set or the need to exclude "bad
years" for community analysis, and so adjustment to the decision rules
may be required.

2. Decision rules were required. Setting desired state required informed
choices to made by authors most familiar with the data and the study
region in conjunction with exploratory analysis e.g. removal of "bad
years" for classifying the communities. These decision rules are
detailed throughout the methods, and may have been slightly
different if this analysis was undertaken by others.

3. Matching monitoring scale to desired state scale. Biomass desired state
was developed for each community type across a relatively broad area
(Cleveland Bay), and extent targets for the sub-region. When bay-
wide targets were tested against individual meadows at the sub-
region scale, the bay-wide biomass desired state for each commu-
nity was not applicable for some individual meadows meaning that
desired state may never be achieved at some locations. This is likely
due to local features that our current model used to define seagrass
communities is not able to resolve, such as wave and wind exposure,
sediment nutrient concentration, and grazing pressure by green sea
turtles (Chelonia mydas) and dugong (Dugong dugon) that will influ-
ence biomass but is less likely to affect extent (Scott et al., 2018). If
the reporting andmonitoring is matched to the desired state scale (i.e.
Cleveland Bay), then small-scale disturbances can occur and the
target for that community still be met. These small-scale disturbances
and variation in local conditions occurred from 2007 to 2017, and
were an inherent component of the data set used to set the targets.
Desired state can be refined to increase the spatial resolution of the
targets to investigate small-scale processes and pressures, but doing
this could also make the desired state less useful as it would result in a
greater number of targets, increase complexity, and complicate pro-
cedures for tracking progress against targets.

Cleveland Bay is affected by tropical cyclones, extreme rainfall and
river discharge events (McKenzie et al., 2019; Bryant and Rasheed, 2018;
Cook et al., 2016), and heat waves that have devastated vast swathes of
coral reefs in the broader region (Lough et al., 2018; Hughes et al., 2018).
Our data confirms that large, event-driven changes in the biomass and
extent of seagrass in Cleveland Bay have occurred, as observed in other
locations in the GBRWHA (Rasheed et al., 2014; McKenna et al., 2015)
and more extreme conditions are projected in the future (Lough and
Hobday, 2011). Excursions below desired state will continue in response



Fig. 6. Interpretation of whether desired state (DS) is met for above-ground biomass (mean � 95% confidence intervals; left) and spatial extent (right).
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to events such as cyclones with frequent occurrence. Under these cir-
cumstances, it is the ability for the seagrass communities to rapidly return
to the prescribed desired state levels that will be of interest. While it may
appear that single targets could make these changes difficult to reach,
reporting procedures can be implemented to track trends relative to
targets.

While returning ecosystems to a particular historic state is a useful
goal, it may not be acheivable. For example, reduced nutrient loading
from rivers may be ineffective in the presence of other major stressors
such as climate change – the Return to Neverland conundrum (Duarte
et al., 2009). Adaptive management frameworks (e.g. Hallett et al.
(2016)) include a need to revise targets, however once set, changes
should be adopted cautiously and infrequently. It may be necessary to
refine the targets to accomodate the resilience needed to withstand
changing pressures (Cook et al., 2016). On the other hand, if manage-
ment actions are effective and there is an increase in the frequency in
which targets are reached, then it may be necessary to refine them to a
higher level to maintain the ability to understand the conditions associ-
ated with when they are met and when they are not. Alternatively,
proxies for resilience such as connectivity among seagrass meadows
(Grech et al., 2016), could be added to the definition of desired state and
used to track progress towards management goals in the face of
increasing pressures or improved management strategies.

4.2. Reporting against desired state

Our definition of desired state provides a benchmark against which to
assess future annual growing season (September–December) condition,
where:

� Desired state is met with a high level of confidence placed in that
assessment if the mean biomass or spatial extent exceeds desired state
and its upper CI (Fig. 6a).

� Desired state is not met with a high level of confidence if the mean
biomass or spatial extent is lower than the lower CI (Fig. 6b).

� Desired state is met with a reduced level of confidence when: 1. the mean
biomass of a community is above the upper CI of desired state but the
CI overlaps with desired state range; or 2. when themean biomass of a
community or spatial extent is within the desired state range (Fig. 6c).

� Desired state is not met with a reduced level of confidencewhen the mean
biomass is lower than the desired state range, but the upper biomass
CI falls within the desired state range (Fig. 6d).

The considerations for reporting against desired state will be affected
by the monitoring and reporting needs of specific programs, all of which
are possible with small adaptations to the framework presented here.
These include scaling community types based on dominance or sensi-
tivity, or impacted versus pristine areas. Trends in ecological condition
can also be accommodated by applying the biomass models to new
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annual monitoring data and a statistically significant increase or decrease
in biomass can be determined. A failure to meet desired state doesn’t
necessarily mean that management actions have failed where there is an
improving trend, or if there have been disturbances that are outside of
management control. The timeframe over which reporting against
desired state occurs will be important in these dynamic habitats with
significant interannual variation. Alternatively, consideration can be
given to designing management around a relative desired state with
better values than currently (i.e. improving trend), but not an absolute
desired state. Given the long time lags inherent in improving water
quality such as reduction in sediment loads from the Burdekin River,
trends in seagrass condition due to management actions will take many
years to become evident (Bartley et al., 2014).

4.3. Conclusions

Setting targets is essential for the management of marine ecosystems,
but doing so presents multiple challenges, and there are few quantitative
examples for benthic habitats. We present an approach to setting seagrass
desired state in complex habitat that is both dynamic and diverse. The
framework we developed enables flexibility to locally-optimize the
analysis to other locations. The process used for setting desired state was
tailored towards the system of Cleveland Bay, but could be modified for
application in other regions with particular environmental contexts, data
availability, and management needs. The study site may be somewhat
unusual in having a relatively long decadal scale historical data set with
differences among years that could be used to set a reference data set.
However, the approach presented herein may be useful in other juris-
dictions to adopt this methodology, or to assess how current data
collection strategies could be modified to allow for desired state esti-
mates in future. The confidence intervals around desired state can be
used for reporting on whether the desired state has been met for future
data collections. It is important that the scale of reporting is consistent
with the scale over which the reference points were set, and these desired
states could be re-scaled as needed. Future research could assess how
management scenarios are likely to return seagrass communities to an
improving trend towards desired state.
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