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Abstract. There has been a well-recognized link between declining water quality and the ecological health of 
coastal ecosystems. A strong driver of water quality change in the Great Barrier Reef (hereafter GBR) is the 
pulsed or intermittent nature of terrestrial inputs into marine ecosystems, particularly close to the coast. 
Delivery of potentially detrimental terrestrial inputs (freshwater, sediments, nutrients and toxicants, typically 
via flood plumes) will be exacerbated under modelled climate change scenarios and presents an on-going risk to 
the resilience and survival of inshore GBR ecosystems. This paper presents an overview of flow and water 
quality associated with extreme weather conditions experienced in the GBR over the 2010 – 2011 wet season. 
Water quality data collected during this period within the Reef Rescue Marine Monitoring Program is presented, 
including the spatial and temporal extent of the water quality conditions measured by in-situ sampling and 
satellite imagery. The consequence of the long wet season has had profound impacts on the people living and 
working within the Queensland coastal area, but may also be the driver of large scale reported decline in the 
many inshore seagrass systems and coral reefs and species that rely on these habitats, with concerns for the 
recovery potential of these impacted ecosystems. 
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Introduction 
Water quality delivered to the Great Barrier Reef 
(GBR) is influenced by an array of factors including 
land-based runoff and river flow, point source 
pollution, and extreme weather conditions (Brodie et 
al. 2011; Waterhouse et al. 2011). River discharge in 
wet and dry tropics river systems is dominated by 
large flood events associated with tropical cyclones 
and monsoonal rainfall (Devlin and Schaffelke 2009) 
Flow rates of rivers are characterised by high inter-
annual, seasonal and event-coupled variability of flow 
(Waterhouse et al. 2011). Most rivers of the Wet 
Tropics drain small catchments with low inter-annual 
variability of rainfall and are characterised by 
multiple short-duration flow events each year. In 
contrast, discharge from the two largest Dry Tropics 
Rivers, the Burdekin and Fitzroy, typically occurs as 
one or two small annual flows, but occasionally as a 
very large flood event which may last for several 
weeks and greatly exceeds discharge from other 
regional rivers. The 2010-11 wet season was 
characterised by extreme events in the GBR region, 
driven by a very strong La Niña in mid 2010, which 
brought extraordinary rainfall, both intense and 

prolonged, across eastern Queensland. Three  tropical 
cyclones (TC) crossed the North Queensland coast in 
this period, including TC Tasha, which crossed near 
Innisfail in December 2010 and eventually went south, 
causing severe flooding from the Brisbane, Burnett, 
Fitzroy and Burdekin Rivers. TC Tasha was followed 
by TC Anthony, a category 2 cyclone that crossed 
near Whitsundays in February 2011. This travelled 
inland and traversed south creating flooding 
conditions in the southern states of Australia. The 
third, TC Yasi (Category 5), crossed the coast 
between Cairns and Townsville in February 2011 
causing extensive physical damage to reefs and 
seagrass beds (GBRMPA 2011) across the central 
GBR The large size of TC Yasi drove further flooding 
conditions north of the Whitsundays. 

This paper details flow conditions and a brief 
overview of the water quality data collected in the 
associated flood plume as part of the Reef Rescue 
Marine Monitoring Program (Johnson et al. 
2011).Plume water quality is monitored through 
in situ water quality measurements at peak- and post-
flow conditions within targeted areas throughout the 
wet season(Devlin et al. 2012). Given the large size of 
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the GBR Marine Park (350,000 km2), river plume 
extent, frequency and duration is measured and 
mapped through the use of remote sensing and GIS 
analysis (Brodie et al. 2010; Schroeder et al. 2012).  
 
Material and Methods 

Measurement of flow  
The frequency and spatial extent of flood plumes is 
mainly driven by the size of flow and the frequency at 
which the rivers achieve high-flow conditions. Flow 
data was sourced from the Department of 
Environment and Resource Management (Queensland, 
http://watermonitoring.derm.qld.gov.au/host.htm) 
 
Flood plume mapping 
The extent of the flood plume was mapped following 
Devlin et al. (2012) using true colour satellite imagery 
derived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS). Satellite images cover 
the high-flow period between 1st January and 30th 
April 2011. The number of images available during 
high-flow periods was constrained to dates associated 
with low cloud cover (the maximum number of 
MODIS scenes processed for any given area was 32). 
True colour images and Level-2 products (chlorophyll 
concentration (Chl-a), coloured dissolved and detrital 
matter absorption coefficient (CDOM))were derived 
from MODIS Level-0 data using SeaWiFS Data 
Analysis System (SeaDASversion 6.2). A combined 
near infrared to short wave infrared (NIR-SWIR) 
correction scheme (Wang and Shi 2007) was applied 
to Level-1 products to overcome the atmospheric 
correction issues above turbid waters, commonly 
found in the nearshore regions of the GBR. 

Water quality sampling 
Flood plume waters generally move into the GBR as 
buoyant freshwater masses and are usually 
constrained in the top surface layer until dissipated or 
eventually mixed into the water column (Devlin and 
Schaffelke, 2009). Sampling sites are indicated in 
Figure 1, and all samples were analysed for salinity, 
TSS, Chl-a, nutrients, CDOM and water temperature. 
 
Results 
The combined extreme events produced record flows 
in nearly all GBR rivers, especially in the southern 
half of the GBR. The total flow for all GBR rivers 
(Fig. 2) was 2.6 times the long term median flow, 
with all rivers exceeding the long term median flow 
by 2 or more times, except for the Tully River (1.5). 

The wet season started comparatively early, with 
high flows in the Wet Tropics during November and 
December 2010, extending into April 2011. Extended 

Figure 1: Overall extent of river plume water in the GBR (2010 – 
2011). Note plumes were not contemporaneous but occurred from 
Dec 2010 to April 2011. 
 
flows were heavily influenced by formation and 
passage of the three tropical cyclones (Fig. 3). Overall, 
flooding occurred in one or more GBR rivers for a 
period of 4 months.  

In the Burdekin (Fig. 3b), water flowed over the 
spillway of the Burdekin Falls Dam for more than 300 
days and the discharge at the mouth was the third 
highest in the instrumental record (approximately 35 
million ML). This followed above average flows 
(mean approximately 8 million ML) in the Burdekin 
River in both 2008 (26 million ML) and 2009 (30 
million ML). To the south, the Fitzroy River (Fig. 3a) 
had its largest flow in the instrumental record 
(approximately 38 million ML) following large flows 
in 2008 and 2009, while the Burnett River had its first 
substantial flow (8 million ML) for 20 years and 
about eight times the mean. The Mary River had its 
largest flow for 10 years. In all cases, except for the 
Burnett River, the instrumental record extends back 
about 80 years. Rivers in the Wet Tropics had above 

Figure 2: Annual freshwater input into the GBR (2000 – 2011) 
from North Queensland Rivers. Data source: Dept. of Environment 
and Resource Management.. 
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average flows by factors of times 2-3 but not record 
flows (Fig. 3c, 3d).  

Plume mapping 
The combination of mapped plume images identifies 
the full extent of surface flood plume waters through 
the 2010-11 wet season. The cumulative area for 
plume waters discharging from Burdekin, Fitzroy and 
all the Wet Tropics rivers is shown in Figure 3, and 
represents a maximum area of approximately 135,797 
km2(i.e., ~39% of the GBR Marine Park extent). 
 
Water quality results 
High concentrations of dissolved and total nutrients, 
TSS, Chl-a and CDOM were measured at all sites, 
with salinity measuring between 15 – 32ppt. The 
geographical influence of high TSS, Chl-a, dissolved 
inorganic nitrogen (DIN), dissolved inorganic 
phosphorous (DIP) and salinity is shown only for the 
Fitzroy regions in Figure 4. Concentrations of 
selected water quality parameters are highly variable 
over time and flow, illustrating the distribution of 
increased particulate and dissolved parameters 
through the movement of flood plume waters.  
 

F
igure 3: Extended flow periods (2010 – 2011) associated with the 
passage of three cyclones between December and February 2011 
for (a) Fitzroy River, (b) Burdekin River, (c) Herbert River and (d) 
Tully River. 

Variability through the plume will also be affected 
by the influence of multiple plumes merging in one 
continuous body of water through the movement of 
plumes in a generally northerly direction such as 
Herbert and Burdekin influencing the Tully region 
and the Mary-Burnett plumes influencing the Fitzroy 
region.The influence of the Fitzroy River plumes on 
GBR water quality was evident in sites around 
Mackay, which are 350km northwest from the Fitzroy 
River mouth and 150km offshore (see Fig. 4). The 
offshore edge of the plume was characterised by 
elevated levels of CDOM, however the characteristics 
of the northern moving plume waters measured near 
Mackay (~350km) were characterised by elevated 
Chl-a, CDOM and TSS concentrations. Water quality 
concentrations are influenced by the size and timing 
of the events, as well as the prevailing weather 
conditions and distance from river mouth (Devlin and 
Schaffelke 2009).  
 
Documented impacts  
The varying elevated concentrations can influence 
short-term ecological processes over time (weeks to 
months) and space (10 to 100km’s), particularly for 
the very large dry tropic rivers such as the Fitzroy. 
Extensive physical damage to coral and seagrass 
occurred in a 300 km wide band right across the  

Figure 4: Mean concentrations of DIN, TSS, DIP and, Chl-a over 
each transect (left panels; with mean distance in dotted line) and 
from date of initial sampling (right panels). Distance graphs show 
mean water quality value and the mean distance of each transect 
(dotted line) and time graphs show daily flow (ML/day) over the 
sampling period. 
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continental shelf following TC Yasi(GBRMPA2011). 
Coral damage was reported within an area of 
approximately 89,090 km2 of the GBR Marine Park 
(about 26% of the total). In total, approximately 15% 
of the total reef area in the Marine Park sustained 
some coral damage and 6% was severely damaged. It 
can be estimated that TC Yasi by itself accounted for 
a 2% loss in coral cover across the GBR (GBRMPA 
2011). It was estimated that approximately 98% of the 
intertidal seagrass area was lost within the affected 
area as a consequence of TC Yasi destructive winds, 
and only a few isolated shoots remained in coastal 
and reef habitats (McKenzie et al 2012). 

The combined effects of a long period of low 
salinity, high contaminant concentration water (e.g. 
Devlin and Brodie 2005; Devlin et al.2012) and 
physical damage from TC Yasi caused severe coral 
loss (GBRMPA 2011) and loss of seagrass 
(McKenzie et al. 2012) along the GBR coast from 
Hervey Bay to Cairns. Importantly these impacts 
come on top of declining seagrass health reported 
since 2009throughout the GBR south of Cairns 
(McKenzie et al. 2012). 

Results from the monitoring program (Johnson et al. 
2011; Thompson et al. 2012; McKenzie et al. 2012) 
show increased juvenile coral mortality and impacts 
on seagrass communities including increased 
mortality and decreased areal coverage prior to the 
2011 events. These impacts were further exacerbated 
by the long periods of low salinity waters and reduced 
light associated with the extreme weather conditions 
(McKenzie et al. 2012). Complete seagrass recovery 
is expected to take several years, but will depend on 
habitat (estuary coast, deep-water or reefs) and the 
level of physical disturbance experienced. For 
example, estuary seagrass habitats have recovered, 2-
3 years after 100% loss (Campbell and McKenzie 
2004); coastal habitats have recovered in 2-3 years 
from remnant plants (McKenzie et al. 2012; 
deepwater habitats have taken 1-3 years to recover 
(McKenzie and Campbell 2003) and reef habitats 
have recovered 8-10 years after 100% loss. 
 
Discussion 
The elevated concentrations of dissolved and 
particulate materials carried in flood plumes have 
been detailed in previous plume studies (Devlin and 
Schaffelke 2009; Bainbridge et al. 2012; Devlin et al. 
2012). Concentrations of water quality parameters 
measured in flood plumes are 2 to 100 fold higher 
than ambient conditions outside of the wet season 
(Schaffelke et al. 2011; Furnas et al. 2011; Devlin et 
al. 2012). 

Large acute events may also impact on the severity 
of the chronic pressures and on conditions required 
for recovery and increased resilience. Potential 

stressors from flood plumes on marine ecosystems 
include prolonged freshwater exposure, decreased 
light availability and smothering by high 
sedimentation during flood events or due to 
resuspension of terrigeneous fine sediments by 
currents, wind generated waves and tides in the period 
after the flood (Fabricius et al. 2011). Large scale 
mortality events associated with low salinity and 
higher temperature waters through flood conditions 
have been documented for coral reefs (Berklemans 
2009) and seagrasses (Waycott et al. 2005; McKenzie 
et al. 2010). The recent events have now shown acute 
stress can result in increased mortality of dugongs and 
sea turtles in the GBR (McKenzie et al. 2012). 

Coral reefs respond to stress in complex ways 
especially in the presence of both acute and chronic 
stress (Kinsey 1988).Chronic exposure of corals to 
increased levels of nutrients, sedimentation and 
turbidity over longer periods of time will affect 
species that are sensitive or vulnerable to changes in 
environmental conditions. This can lead to medium 
and long-term impacts such as reduced densities of 
juvenile corals, subsequent changes in community 
composition, decreased species richness and shifts to 
communities that are dominated by more resilient 
coral species and macroalgae (Hughes et al. 2011; 
DeVantier et al. 2006). Recent work has linked 
increased turbidity from the export and availability of 
finer sediment out of the large Dry Tropic regions 
(Fabricius et al, 2011). Other long-term ecological 
impacts can be seen in the proliferation of Crown of 
Thorns Starfish (COTS) in areas which are regularly 
influenced by anthropogenic nutrient loads (Fabricius 
et al. 2010).  

For the GBR the acute stresses as experienced in 
2010-11 caused physical damage by cyclones and 
physiological damage to corals and seagrass through 
large discharges of fresh water, sediment and nutrient 
rich water input and increasing numbers of COTS 
outbreaks (Brodie and Waterhouse 2011). These are 
combined with the chronic stresses of reduced water 
quality from high loads of sediment, nutrient and 
pesticide discharge and ocean acidification. These 
acute and chronic stressors are  driving the GBR to a 
degraded condition evidenced in low coral cover 
(Hughes et al. 2011) and poor condition of seagrass, 
dugongs and turtles (Bell and Ariel 2011; Brodie and 
Waterhouse 2012). 

The combination of these acute impacts from 
extreme weather years with the chronic stresses of 
poor water quality and climate change factors such as 
increasing temperature may tip these systems over the 
thresholds for a complete phase shift (Elmhirst et al. 
2009). While it is impossible to definitely attribute the 
extreme events in Australia (and the rest of the world 
but see, for example, Lough and Hobday 2011) over 
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the last few years to a changing climate, they do give 
us potential understanding of the future pressures in 
the sense that more frequent intense cyclones and 
correlated rainfall and runoff events are predicted by 
the climate change forecasting (Trenberth 2011). The 
extreme weather events of 2010-11 allowed us to see 
this combined stress response working in ‘real time’. 
The likelihood of increased frequency of extreme 
runoff events associated with climate change 
combined with continued chronic stresses makes the 
management of GBR a challenging task. 
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