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Executive Summary 
This Progress Report summarises baseline data and research results aimed at developing 
indicators for seagrass condition in response to contrasting sediment properties. 
 
This first year focused on preliminary analysis of the relationships between sediment 
properties and seagrass community properties (esp. species composition and epiphyte 
loads) based on existing Seagrass-Watch data, to identify parameters that most predictably 
change in response to changing sediment and water quality. 
 
Progress to date includes a detailed description of the datasets used and their manipulation 
to ensure they are suitable for further analysis. The Seagrass-Watch program provides a 
comprehensive dataset covering nearly 2000 km of the Queensland coastline, which is 
suitable for the investigation of relationships between seagrass, sediments and epiphytic 
algae. The visual/tactile estimation method used in Seagrass-Watch is a simple yet relatively 
accurate measure of the sediment grain size which can be used for quantitative 
assessments. 
 
Due to the size of the datasets (over 42000 samples), and the time required to validate and 
manipulate, the time frame of the project was not adequate to statistically analyse 
relationships.  Due to time constraints only preliminary exploration of the dataset was 
completed. 
 
Preliminary results of relationships between seagrass communities and sediment properties 
along the Queensland coast are explored. Preliminary findings are that coastal sediments 
differ in the north of the state compared to the south, with greater composition of finer 
sediments in the south. This appears correlated with the predominance of the structurally 
larger Zostera capricorni dominated meadows in the south.  
 
The roles of different seagrass species in their communities are discussed as they can vary 
depending on their stature and life history. The role of disturbance and meadow succession 
are also discussed and a conceptualised model of the relationship between seagrass and 
sediments is proposed. 
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Introduction 
The coastal zone of the Great Barrier Reef shelf receives an average annual input of 
sediment on the order of 14-28 Mty-1, an estimated increase by at least four times compared 
to estimates from before 1850 (Schaffelke et al. 2005; Alongi and McKinnon 2005). Most 
sediments are deposited within the first few kilometres of river mouths (Larcombe and 
Woolfe 1999; Wolanski 1994), however fine sediment particles can travel large distances 
(Wolanski et al. 1981; Devlin and Brodie 2005). These sediments settle out of the water 
column, particularly in the protected waters of estuaries, fringing reefs on the leeward 
margins of islands and coastal north-facing bays, areas where seagrasses are most likely to 
be found (Lee Long et al. 2003; Wolanski et al. 2005). Thus coastal seagrass habitats are 
vulnerable to changes in water quality as they are directly exposed to increased sediment 
loads.  
 
Seagrass meadows are considered important for sediment trapping and sediment 
stabilisation. Seagrasses, especially structurally large species, affect coastal and reefal water 
quality by absorbing nutrients and trapping sediments acting as a buffer between catchment 
inputs and reef communities. Seagrass meadows have the ability to modify the energy 
regimes of their environments (Keulen and Borowitzka, 2003), and help stabilise sediment by 
trapping and binding the sediment (Gacia et al. 2003). Seagrasses are able to do this as they 
have a vast root mat that can take up nutrients from the sand (Fonesca 1989). However, the 
trapping ability of seagrass is in reality equilibrium established between deposition / 
sedimentation and erosion/resuspension (Koch 1999). 
 
Abal and Dennison (1996) predicted that detectable impacts on seagrass meadows may 
occur if higher sediment and associated nutrients were transported into the nearshore areas 
of the GBR region. Research to date in the GBR region has shown that nutrients do not 
appear to be having a negative effect on seagrass growth and distribution (Mellors et al. 
2005). However, a broad spatial survey revealed substantial heterogeneity in sediment 
nutrients and seagrass biomass even within species (Mellors et al. 2005). This heterogeneity 
indicates the significance of local site history: the geographic setting of a location dictating its 
sediment regime, while the frequency of disturbance dictates the structure of the meadow. In 
turn, differences in sediment mineralogy and grain size influence the nutrient regime at 
specific locations (Mellors et al. 2007). 
 
Seagrasses are sensitive to the deposition of sediments directly on top of them. Where 
sediment deposition is greater than the ability of the seagrass beneath it to growth through 
the sediments, plants will die. Anecdotally seagrass meadows in the GBR are regularly lost 
due to the deposition of sediments over them such as the result of flooding of the Bohle 
River, north of Townsville, where intertidal meadows of Halodule and Halophila were 
completely covered (J. Mellors, DPI&F, Pers. Comm.) or in Sarina Inlet near Mackay where 
there was an observed loss of seagrass due to sediment related smothering (Personal 
Observations). No data on the specific sensitivity of seagrasses to burial in the GBR is 
available although it is intuitive that larger more robust species such as Zostera capricorni 
are more likely to survive that smaller ephemeral species. In addition to the action of 
sediment deposition river flood plumes are often associated with strong currents during their 
movement from the river, out to sea.  
 
Studies have shown that sediment characteristics are important in determining seagrass 
growth, germination, survival, and distribution (Short, 1987; Barko et al. 1991; Terrados et al. 
1997; Halun et al. 2002: Bradley and Stolt 2005; van Katwijk and Wijgergangs 2004). 
Sediment texture, in particular, affects diffusion of oxygen, rhizome elongation, and levels of 
nutrients and phytotoxins, such as sulfides (Chambers et al. 1994; Fonseca et al. 1998). 
Sandy-textured sediments tend to diffuse oxygen more readily, obstruct rhizome elongation, 
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and have lower fertility (Thayer et al. 1984; Fonseca et al. 1998; Koch et al. 2000). 
Conversely, finer-textured sediments will tend to have higher fertility, allow rhizome 
elongation, and will tend to have greater levels of anoxia as pore water will have less 
interaction with the overlying water column (Koch et al. 2000). The effects of anoxia on 
seagrass are complex as anaerobic conditions may stimulate germination in some species 
(Moore et al. 1993); but also result in elevated sulfide levels, an inhibiter to leaf biomass 
production in more mature plants (Terrados et al. 1999; Koch et al. 2007), and a known toxin 
to seedlings of some species (Goodman et al. 1995). While there have been a few studies 
describing the sediment characteristics of seagrass meadows, what is presently known is 
‘‘not sufficient to establish the ‘best’ sediment types for submerged aquatic vegetation growth 
at this time’’ (Koch et al. 2000). 
 
One of the most extensive datasets which includes both measures of seagrass (abundance 
and species) and sediment characteristics (visual/tactile estimation of grain size composition) 
along the Queensland coastline is from Seagrass-Watch. The Seagrass-Watch monitoring 
program was established in 1998 as an initiative of the Queensland Department of Primary 
Industries and Fisheries (QDPI&F). This program monitors the seasonal dynamics of 
seagrass meadows, the relationships between seagrass condition and climate change and 
the loss and recovery of seagrass meadows and provides an early warning of change of the 
intertidal seagrasses of the GBRWHA. It involves supervised monitoring at predominately 
intertidal sites (including sites monitored for the Reef Plan MMP). Local community 
volunteers are trained by QDPI&F in the application of methods for scientifically rigorous 
assessment of seagrass resources. Independent analysis of the data collected indicated that 
the Seagrass-Watch monitoring methods are appropriate to detect change of intertidal 
seagrass communities on various scales (De’ath 2005). Seagrass-Watch monitoring 
currently occurs at sixty-five locations (across fifteen regions) in Queensland (Figure 1): 
twenty-nine of which are within the GBRMPWHA. Seagrass-Watch is an ongoing program 
and current updates and information are available on www.seagrasswatch.org. 
 
Visual/tactile descriptions of wet surficial marine sediments, as used in the Seagrass-Watch 
program, have previously been shown to be extremely useful (Hamilton 1999). For example, 
the visual descriptions made in the field from the northern Great Barrier Reef lagoon by the 
Royal Australian Navy Hydrographic Office formed a consistent and reliable dataset at 
regional and smaller scales (Hamilton 1999). In this study, the sediment descriptions from 
the Seagrass-Watch program are used to explore seagrass and sediment relationships at 
both spatial and temporal scales. 
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Figure 1: Distribution of Seagrass-Watch monitoring locations in Queensland (April 2007). 
 
 

Methodology 
Visual / tactile estimates of grain size scheme 
Methodology and terminology of the visual/tactile description scheme are prescribed in 
McKenzie et al. (2003). Field descriptions of sediment type collected 0-2cm below the 
sediment/water interface were determined by visual and tactile inspection of (wet) samples 
and constituents (primary descriptors) differentiated according to the Udden-Wentworth 
grade scale (Wentworth 1922; Udden 1914): shell, rock and gravel (>2000μm); coarse sand 
(>500 μm); sand (>250 μm); fine sand (>63 μm); and mud (<63 μm). The primary descriptors 
are written down from left to right in decreasing order of abundance: e.g. Mud/Sand is mud 
with sand, where mud is determined as the dominant constituent (by volume). Note that 
geological descriptions are usually written in reverse order to this (e.g. Folk’s classification). 
 

Data collection 
Seagrass-Watch sites (50m x 50m) are placed within relatively homogeneous areas (low 
variability, even topography) of intertidal seagrass meadows representative of a location 
(<10km). The monitoring is conducted using a nested design at three scales: transect 
(metres), sites (hectares) and locations (kilometres). Monitoring sites are established in 
areas of a.) relatively high usage, b). where usage may be high in the near future and c.) in 
comparable ‘control’ sites where current and predicted usage is low and likely to remain low. 
Generally, three sites are established at each location.  
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Seagrass abundance and habitat characteristics were monitored approximately quarterly at 
permanently marked sites, using the standard Seagrass-Watch rapid assessment technique, 
as described in McKenzie et al. (2003). Within each site, three replicate transects were laid 
parallel to each other, and 25m apart. Along each transect, observers recorded seagrass 
habitat characteristics (including percent seagrass cover, seagrass species composition, 
canopy height, epiphyte cover, algae cover, algae composition, sediment type and 
associated fauna) within a 0.25m2 quadrat (50cm x 50cm) at five-metre intervals (11 
quadrats per transect, 33 quadrats per site). Percent cover of seagrass within the quadrat 
was visually estimated with photographic cards as a guide following McKenzie et al. (2003) 
(see www.seagrasswatch.org). Seagrass species within the quadrat were identified and the 
percent contribution of each species to the total cover determined. Seagrass species were 
identified according to Waycott et al. (2004).  Canopy height of the dominant strap leaved 
species in the seagrass community was measured (from the sediment to the leaf tip) using a 
ruler. The method used was to ignore the tallest twenty percent of leaves of the dominant 
species and to haphazardly select three to five leaf blades from the remainder. The cover of 
epiphytes was recorded by estimating the percent of the total leaf surface area covered by 
epiphytes. Percent cover of non-epiphytic algae in each quadrat was estimated using the 
same visual technique used for seagrass cover.  
 

Pseudo-geological classes 
To convert the qualitative visual/tactile descriptions to quantitative values (percentage 
composition by weight), the 265 unique description categories defined in the Seagrass-
Watch dataset were first collapsed to 86 pseudo-geological generic classifications involving 
the five descriptors mud, fine sand, sand, coarse sand and gravel. Twenty-six of the 
descriptions occurred only once or twice in the 42,000 samples (e.g. Mud / Coarse sand / 
Gravel), whereas nine descriptions comprised 88% of all data: these were sand/mud, 
mud/sand, sand, fine sand, mud, sand/gravel, fine sand/mud, mud/fine sand, 
sand/mud/gravel. The components of each category were then scored from 3 to 1 based on 
their order of dominance. The fourth or higher components of a description were considered 
insignificant and scored 0. From the scored values, the percent composition of each grain 
size was calculated.  This scoring scheme was loosely based on Folk’s classification (Figure 
2); however the compositions were more conservative. For example, if the visual/tactile 
estimation from Seagrass-Watch was mud/sand, Folk’s classification sM would result in 
compositions of 10-50% sand, 50-90% mud, whereas the classification here would be 60% 
mud, 40% sand.  
 

 
 

Figure 2: Sediment classification scheme modified from Folk (1954, 1974). 
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For analysis, grain size was differentiated into larger fractions according to the Udden – 
Wentworth grade scale: gravel-sized particles have a nominal diameter of 2.0mm; sand-
sized particles have nominal diameters from <2.0mm to >63 µm; mud (including silt and clay) 
-sized particles have nominal diameter <63 µm (Table 1).  
 
 

Table 1:  Grain size classes used, based on the  
Udden-Wentworth grade scale of Wentworth (1922). 

 
0 – 0.002 mm Fine-medium Clay 

0.0021 – 0.004 mm Coarse Clay 
0.0041– 0.008 mm Very Fine Silt 
0.0081 – 0.016 mm Fine Silt 
0.0161 – 0.031 mm Medium Silt 
0.0311 – 0.063 mm Coarse Silt 

Mud 

0.0631 – 0.125 mm Very Fine Sand 
0.1251 – 0.250 mm Fine Sand 
0.2501 – 0.500 mm Medium Sand 
0.5001 – 1.000 mm Coarse Sand 
1.0001 – 2.000 mm Very Coarse Sand 

Sand 

2.0001 – 4.000 mm Granules 
>4.0001 mm Pebbles and larger 

Gravel 

 
 

Validation of the visual / tactile estimation of grain size 
Validation of the tactile estimation of grain size was conducted by examining samples where 
size of sediment particles was measured by both visual/tactile (descriptive) estimation and by 
wet sieving. The dataset used for validation was from the DPI&F/CRC Reef GBR Seabed 
Expeditions (1994 to 1999). These expeditions were conducted to examine the presence, 
abundance and distribution of seagrasses between 15m and 90m deep in the GBR. Because 
of the extent of the region covered, sampling was conducted over multiple years (1994 to 
1999) with a section of the GBR sampled in each year. The sampling area included the inter-
reef and lagoon waters (from the 15m contour seaward to the outer barrier reefs, or to the 
inner edge of the Ribbon Reefs in the northern section). Sampling included the GBR from the 
tip of Cape York Peninsula (10°S) to Hervey Bay (25°S) approximately one thousand nautical 
miles of coastline and extending just below the GBR in the south. At each sampling site, a 
real time video (remote camera slaved to an onboard monitor) was used to record bottom 
habitat characteristics. Data on seagrass, macro-algae, benthos and sediment composition 
was obtained from video images. In conjunction with the camera tow, a 0.0625m2 van Veen 
Grab sample of the sediment was collected providing a qualitative benthic sample to confirm 
sediment characterisation inferred from the video. Before sediment samples were 
catalogued, a “deck description” was conducted by visual and tactile inspection of (wet) 
samples. This deck description was conducted using the same methodology as employed by 
the Seagrass-Watch program. Post expedition, sediment samples were wet sieved into 
seven fractions according to the Wentworth (1922) scale: shell/gravel (>2000 μm), coarse 
sand (<2000-1000μm), medium sand (<1000-500μm), sand (<500-250μm), fine sand (<250-
125μm), very fine sand (<125-63μm) and mud (<63μm). This data has also been 
incorporated into the National Marine Sediments Database (Passlow et al. 2005; 
http://www.ga.gov.au/oracle/mars/). 
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The DPI&F/CRC Reef GBR Seabed Expeditions (1994 to 1999) dataset was interrogated to 
obtain data which was of the same categories as the Seagrass-Watch coastal dataset. 
Sediment samples which included Halimeda and foraminifera sands were removed as these 
are not found in the coastal dataset. A total of 1,203 sediment samples from a possible 1,426 
were used for further analysis. 
 
To compare the descriptive and sieve derived datasets from the DPI&F/CRC Reef GBR 
Seabed Expeditions (1994 to 1999), the mean grain size was calculated using the method of 
moments as outlined by Lindholm (1987). First, grain sizes (D) were transformed to the 
Krumbein phi (φ) scale (Krumbein and Sloss 1963), via Equation 1. 
 
Equation 1:  φ = -log2 D 
 
 Where D = is the diameter of the particle, in millimetres. 
 
The mean gain size (M) was then calculated for each of the datasets (descriptive and sieve 
generated) via Equation 2. 
 

Equation 2:  
n
fx∑=    Μ  

 
Where f = percent retained by the smaller of adjacent sieves. 

 x = the midpoint value in phi between adjacent sieves. 
 n = sum of the cumulative percent retained on the smallest sieve used. 

This value will generally be less than 100%, as mud material 
passes through all the sieves. 

 
To transform the mean gain size (M) phi value back to mm (D), Equation 3 was used. 
 

Equation 3:  D = 2-φ  
 
The resulting mean grain sizes from each of the paired datasets, were then compared 
statistically using a Paired T-test. 
 
The mean grain size of the descriptive and sieve derived datasets from the DPI&F/CRC Reef 
GBR Seabed Expeditions (1994 to 1999) were not significantly different (Paired T-test, 
T = -0.51, df = 54, p=0.6092). Therefore, the visual/tactile estimations of grain size used in 
the Seagrass-Watch program could be converted to a quantitative estimate for further 
analysis.  
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Preliminary results 
The Seagrass-Watch Queensland coast dataset extends from Cooktown to Moreton Bay 
(Figure 3) and covers a distance of approximately 2,000km. There are distinct latitudinal 
patterns in sediments. Sediment grain sizes were not normally distributed within habitats of 
regions sampled.  Coastal seagrass habitats were generally composed of Sand/Mud in the 
north, and tended to more Mud/Sand south of the Whitsunday’s (Figure 3). Coarser 
sediments are generally associated with reef platform seagrass habitats. Coastal seagrass 
meadows north of Whitsunday’s were generally H. uninervis dominated, in comparison to 
south of Whitsunday’s which were Zostera capricorni dominated (Figure 4). Most seagrass 
meadows to the south were also located within estuary habitats. No reef-platform seagrasses 
were monitored north of Mackay. 
 
Sediment grain size composition also showed long-term trends at many of the locations 
examined along the coast (Figure 5). Closer examination of a couple of long-term monitoring 
sites revealed temporal patterns in seagrass cover, seagrass species composition and 
sediment grain size composition. For example, at Shelly Beach (Townsville), sediments have 
fluctuated from sand/mud to mud/sand over the six years of monitoring (Figure 6). These 
changes appear to be correlated with the total seagrass cover, although the relationship with 
species composition is less clear.  
 
At another coastal site in the region (Bushland Beach), seagrass cover increased over the 
monitoring period however there was little change in species composition. At this site, 
increases in the sediment mud content appear to correlate with increased Halodule uninervis 
leaf height and epiphyte cover (Figure 7).  
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Figure 3:  Mean composition of sediments for each seagrass habitat type in each Seagrass-Watch 
region along the east coast of Queensland.  All sites pooled over monitoring period within habitat type 
across each region. 
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Figure 4:  Mean seagrass composition for each seagrass habitat type in each Seagrass-Watch region 
along the east coast of Queensland.  All sites pooled over monitoring period within habitat type and 
across each region. 
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Figure 5:  Temporal changes in sediment grain size composition  
for selected sites along the east coast of Queensland. 
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Figure 6: Changes in sediment grain size composition (a), seagrass total cover (b) and seagrass 
species composition (c) at Shelly Beach (SB2) (Townsville) from April 2001 to February 2007. 



Len McKenzie 

12 

0%

20%

40%

60%

80%

100%

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

Ap
r-

03

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

Ap
r-

04

Ju
l-0

4

O
ct

-0
4

Ja
n-

05

Ap
r-

05

Ju
l-0

5

O
ct

-0
5

Ja
n-

06

Ap
r-

06

Ju
l-0

6

O
ct

-0
6

Ja
n-

07

Ap
r-

07

gr
ai

n 
si

ze
 c

om
po

si
tio

n

a.

0

20

40

60

80

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

Ap
r-

03

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

Ap
r-

04

Ju
l-0

4

O
ct

-0
4

Ja
n-

05

Ap
r-

05

Ju
l-0

5

O
ct

-0
5

Ja
n-

06

Ap
r-

06

Ju
l-0

6

O
ct

-0
6

Ja
n-

07

Ap
r-

07

se
ag

ra
ss

 c
ov

er
 (%

)

b.

0%

20%

40%

60%

80%

100%

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

Ap
r-

03

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

Ap
r-

04

Ju
l-0

4

O
ct

-0
4

Ja
n-

05

Ap
r-

05

Ju
l-0

5

O
ct

-0
5

Ja
n-

06

Ap
r-

06

Ju
l-0

6

O
ct

-0
6

Ja
n-

07

Ap
r-

07

se
ag

ra
ss

 s
pe

ci
es

 c
om

po
si

tio
n Halodule uninervis

Halophila ovalis

c.

0

5

10

15

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

Ap
r-

03

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

Ap
r-

04

Ju
l-0

4

O
ct

-0
4

Ja
n-

05

Ap
r-

05

Ju
l-0

5

O
ct

-0
5

Ja
n-

06

Ap
r-

06

Ju
l-0

6

O
ct

-0
6

Ja
n-

07

Ap
r-

07

ca
no

py
 h

ei
gh

t (
cm

)

d.

0

20

40

60

80

100

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

Ap
r-

03

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

Ap
r-

04

Ju
l-0

4

O
ct

-0
4

Ja
n-

05

Ap
r-

05

Ju
l-0

5

O
ct

-0
5

Ja
n-

06

Ap
r-

06

Ju
l-0

6

O
ct

-0
6

Ja
n-

07

Ap
r-

07

ep
ip

hy
te

 c
ov

er
 (%

)

e.

 
 
Figure 7:  Changes in sediment grain size composition (a), seagrass total cover (b), seagrass species 
composition (c), canopy height (d) and epiphyte cover (e) at Bushland Beach (Townsville) from 
November 2002 to April 2007. 
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Discussion 
The Seagrass-Watch program provides a comprehensive dataset covering nearly 2,000 km 
of the Queensland coastline, which is suitable for the investigation of relationships between 
seagrass, sediments and epiphytic algae. The visual/tactile estimation method used in 
Seagrass-Watch is a simple yet relatively accurate measure of the sediment grain size which 
can be used for quantitative assessments. 
 
Coastal sediments differ in the north of the state compared to the south, with greater 
composition of finer sediments in the south. This is also appears correlated with the 
predominace of Zostera capricorni dominated meadows in the south. The roles of different 
seagrass species in their communities vary depending on their stature and life history. The 
often sparse meadows typical of the central and northern GBR coast, are probably less 
important for sediment trapping than in other regions due to their smaller size (Mellors et al. 
2002, Koch et al. 2007) often being less than ten centimetres in height (Coles et al. 1987 , 
McKenzie 1994). This is possibly a consequence of disturbance, as meadows which are 
highly disturbed (due to wave action and associated sediment movement) are usually 
composed of structurally smaller species such as Halophila ovalis and Halodule uninervis 
(narrow leaved).  
 
However, seagrass meadows can be successional in nature. In terrestrial plant communities, 
succession not only changes in species composition and abundance, but also changes in the 
environmental conditions such as soil structure, organic matter and nitrogen in the soil 
(Begon v 1996). Seagrass meadow development is generally viewed as a successional 
process: a directional and continuous pattern of colonisation and extinction of species at a 
site over time (Begon et al. 1996). Along the Queensland coast, the structurally small 
seagrass species H. ovalis and Halodule spp. generally colonise bare intertidal substrate 
first, followed by the structurally larger Z. capricorni which becomes the dominant species, 
with a reduction in the relative abundance of the original two colonising species (e.g. Birch 
and Birch 1984; Poiner 1984). The rate of succession can be influenced by environmental 
conditions such as sediment type (Harper 1977). For example, coarse, sandy sediments tend 
to have low nutrients (Udy and Dennison 1996; Mellors et al. 2005), limiting plant growth and 
slowing the rate of succession (Begon et al. 1996). However, changes in sediment type have 
not been documented during succession in seagrass meadows; although Birch and Birch 
(1984) recorded net accretion of sediment during the ten year succession of an intertidal 
meadow. 
 
Although some seagrass meadows along the coast have not changed species (e.g., 
Bushland Beach), increased sedimentation appears to have increased with increase in 
canopy height. Sedimentation and resuspension of particles is not only a function of the 
hydrodynamic conditions in the seagrass meadow but also depends on the percentage of the 
water column which is occupied by the vertical distribution of seagrass leaves (Koch 1999). 
When seagrass occupy the entire water column, current velocities are reduced (Ward et al. 
1984; Fonseca and Fisher 1986) and sediments tend to accumulate (Fonseca 1996). In 
contrast, when the water depth is larger than the maximum meadow height, wave attenuation 
is less efficient, and sediment is deposited as well as resuspended (Ward et al. 1984). 
Resuspension not only changes the meadow geomorphology but affects other environmental 
factors essential for the survival of the plants such as: increasing total suspended solids 
(TSS) in the water column which results in reduced light availability (Dennison et al. 1993); or 
enhancing the flux of nutrients from the sediment into the water column to fuel eutrophication 
in shallow waters (Duarte 1995). In such instances, the abundance of epiphytes increases 
which also trap finer sediment particles, further reducing light available to seagrass.  
Eventually this will begin to cause seagrass loss. 
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Increased development and changes in land use patterns in the coastal zone have resulted 
in increased sediment loading and eutrophication, which has lead to extensive degradation 
and loss of seagrasses (Short and Burdick 1996; Short and Wyllieecheverrria 1996). This 
increase in siltation of the sediments promotes changes in the sediment conditions by 
increasing the concentration of silt, organic matter, and nutrients (Kamp-Nielsen et al. 2001) 
causing the light penetration to be reduced (Bach et al. 1998). This ultimately affects 
seagrass in a negative way (Terrados et al. 1998). 
 
Nutrient loading is increased in coastal areas due to runoff, stormwater input and various 
types of litter. While nitrogen and phosphorous play an important role in the growth of 
seagrass meadows, an excess of these can have deleterious effects. Macroscopic and 
microscopic algae can grow in large amounts and become abundant as attached epiphytes 
or free floating forms, reducing light penetration in the water column. Increased epiphytic 
growth can result in shading of seagrass leaves by up to 65%, reducing photosynthetic rate 
and leaf densities of the seagrasses (Touchette, 2000; Walker and McComb 1992). As a 
result of these factors, seagrass decline is on the rise in many coastal areas worldwide (Orth 
et al. 2006). 
 
Based on the findings from this project and information from the scientific literature on the 
effects of sedimentation and related nutrients on seagrasses, a conceptualised model is 
proposed (Figure 8). 
 
 

 
 
 
Figure 8:  Conceptual diagram of the relationships between sedimentation and seagrass (abundance, 
species composition, canopy height and epiphytes) in successional seagrass meadow. 
 
A preliminary/graphical examination of dataset has revealed interesting relationships worthy 
of further detailed statistical investigation. Unfortunately this was not possible within the time 



Relationships between seagrass communities and sediment properties along the Queensland coast 

15 

and resources available, and is planned for the near future in consultation with the Australian 
Institute of Marine Science. 
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