Author's Accepted Manuscript

Spatial patterns of sub-tidal seagrasses and their tissue nutrients in the Torres Strait, northern Australia: Implications for management

James K. Sheppard, Alex B. Carter, Len J. McKenzie, C. Roland Pitcher, Robert G. Coles

PII: DOI: Reference: S0278-4343(08)00144-1 doi:10.1016/j.csr.2008.03.033 CSR 1809

www.elsevier.com/locate/csr

To appear in: Continental Shelf Research

Accepted date: 10 March 2008

Cite this article as: James K. Sheppard, Alex B. Carter, Len J. McKenzie, C. Roland Pitcher and Robert G. Coles, Spatial patterns of sub-tidal seagrasses and their tissue nutrients in the Torres Strait, northern Australia: Implications for management, *Continental Shelf Research* (2008), doi:10.1016/j.csr.2008.03.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Spatial patterns of sub-tidal seagrasses and their tissue
2	nutrients in the Torres Strait, northern Australia:
3	Implications for management
4	
5	
6	
7	
8	
9	
10	
11	James K. Shennard ^{a,b} . Alex B. Carter ^{a,b} . Len I. McKenzie ^{a,b,} . C. Boland Pitcher ^{b,c}
13	Robert G. Coles ^{a,b*}
14	
15	
16	
17	
18	
20	[*] Marine Ecology Group, Northern Fisheries Centre, Department of Primary Industries & Fisheries, PO Box 5396. Cairns, Oueensland, Australia 4870
21	
22	^b CRC Torres Strait, PO Box 772, Townsville, Queensland 4810, Australia
23 24	^c CSIRO Marine & Atmospheric Research. Mathematics & Information Sciences, 233 Middle Street.
25	Cleveland, Qld. 4163 Australia
26	
27	
29	
30	
	OX IIII

^{*}Corresponding author. Marine Plant Ecology Group, Northern Fisheries Centre, Department of Primary Industries, PO Box 5396,Cairns, Queensland, Australia 4870. E-mail address: Rob.Coles@dpi.qld.gov.au (Rob Coles).

31 Abstract

33	The distribution and nutritional profiles of sub-tidal seagrasses from the Torres Strait were
34	surveyed and mapped across an area of 31,000 km ² . Benthic sediment composition, water
35	depth, seagrass species type and nutrients were sampled at 168 points selected in a stratified
36	representative pattern. Eleven species of seagrass were present at 56 (33.3 %) of the sample
37	points. Halophila spinulosa, Halophila ovalis, Cymodocea serrulata and Syringodium
38	isoetifolium were the most common species and these were nutrient profiled. Sub-tidalseagrass
39	distribution (and associated seagrass nutrient concentrations) was generally confined to
40	northern-central and south-western regions of the survey area (< longitude 142.60), where
41	mean water depth was relatively shallow (approximately 13 m below MSL) and where
42	sediments were comprised primarily of muddy sand to gravelly sand. Seagrass nitrogen and
43	starch content, the most important nutrients for marine herbivores, were significantly correlated
44	with species and with the plant component (above or below ground). For all seagrass species,
45	the above-ground component (shoots and leaves) possessed greater nitrogen concentrations
46	than the below-ground component (roots and rhizomes), which possessed greater starch
47	concentrations. S. isoetifolium had the highest total nitrogen concentrations $(1.40 \pm 0.05\%)$
48	DW). However, it also had higher fibre concentrations ($38.2 \pm 0.68\%$ DW) relative to the other
49	four species. <i>H. ovalis</i> possessed the highest starch concentrations $(2.76 \pm 0.12\% \text{ DW})$ and
50	highest digestibility (83.24 ± 0.66 % DW) as well as the lowest fibre (27.2 ± 0.66 % DW). The
51	high relative abundance (found at 55 % of the sites that had seagrass) and nutrient quality
52	characteristics of H. ovalis make it an important source of energy to marine herbivores that
53	forage sub-tidaly in the Torres Strait. There were two regions in Torres Strait (north-central
54	and south-western) where sub-tidal seagrass meadows were prevalent and of relatively higher
55	nutritional value. This spatial and nutritional information can be used by local agencies to

56	manage and to protect the ecological, economic and cultural values of the sub-tidal seagrass
57	ecosystems and associated fisheries of the Torres Strait.
58 59 60	Key words
61 62	Seagrass; dugong; turtle; benthic; nutrient; biogeography; Torres Strait
63 64	1. Introduction
65	
66	Seagrass meadows are highly productive marine ecosystems (Costanza et al, 1997; Duarte and
67	Chiscano, 1999) and are a key component of coastal trophodynamics, benthic faunal habitat,
68	and biogeochemical cycling (Walker, 1989; Cebrián and Duarte, 1997; Perry and Dennison,
69	1999). The high primary productivity of seagrass meadows drives the high productivity of
70	valuable commercial fisheries such as penaeid shrimps (Coles et al., 1987; Watson et al., 1993).
71	
72	Coastal seagrass habitats have come under growing pressure in recent decades from
73	anthropogenic threats associated with agriculture and urban development (Short and Willie-
74	Echeverria, 1996; Duarte 2002). Excessive nitrogen loading from terrestrial sources such as
75	sewerage and agricultural run-off can inhibit seagrass growth and survival through direct
76	physiological response and by stimulating algal growth leading to light reduction (Schaffelke et
77	al., 2005).
78	
79	Management initiatives designed to conserve ecologically and economically valuable seagrass
80	communities require comprehensive mapping and inventory databases for monitoring changes
81	(natural and anthropogenic) in seagrass communities (Kirkman, 1996; Coles and Fortes, 2001;
82	McKenzie et al., 2001). The first step towards enhancing seagrass meadow management, and
83	the management of fisheries that depend on seagrasses, is the acquisition of baseline data on

84	spatial patterns and relative 'quality' as habitat. This includes identifying optimal foraging sites
85	for marine herbivores based on the nutritional value of the seagrass available.
86	
87	The Torres Strait region of far north Queensland, Australia, comprises one of the most
88	extensive seagrass communities in Australia and provides critical habitat for commercial and
89	traditional fishery species (Bridges et al, 1982; Pitcher et al., 1992; Long and Poiner, 1997;
90	Coles et al., 2003). However, regional variation in the nutritional value of these seagrass
91	meadows has not been studied or mapped. The seagrass meadows are regionally important
92	habitat and food resources for threatened green turtle (Chelonia mydas) and dugong (Dugong
93	dugon) populations (Marsh et al., 1997; Butler and Jernakoff, 1999; André et al., 2005). Green
94	turtle and dugong populations are fished traditionally and managed as fisheries under the
95	arrangements in Article 22 of the Torres Strait Treaty and Torres Strait Fisheries Act 1984.
96	Fishing for turtle and dugong is an important part of the cultural life of many Torres Strait
97	Islanders and the meat from these animals is an important part of the local island diet.
98	
99	Despite the considerable ecological and economic value of the Torres Strait marine ecosystem,
100	the sub-tidal benthic communities remain understudied. Regional variation in subtidal seagrass
101	species composition has not been mapped for a decade in Torres Strait (Long and Poiner,
102	1997), and the south-west region has never been mapped. Large-scale seagrass dieback events
103	in the north-western Torres Strait associated with climatic disturbance (Pitcher et al., 2004)
104	highlight the urgent need for baseline data on seagrass community structure, composition and
105	dynamics. Prediction of the effects of environmental impacts on Torres Strait benthic habitats
106	and the fisheries they sustain requires better understanding of the distribution, status and
107	functioning of the regions' extensive seagrass ecosystems.

CEPTED MANUSCRI

109 We conducted a baseline survey of the sub-tidal seagrass communities of the Torres Strait 110 under the aegis of a CSIRO seabed biodiversity project. The 31,000 km² area surveyed 111 included open sea floor, reef flats, and benthic habitat adjacent to continental islands. Seagrass 112 species distribution and nutrient profiles were sampled and compared against environmental 113 parameters such as water depth and sediment type. In this paper we investigate whether abiotic 114 factors (water depth, sediment) influence subtidal seagrass community structure and provide 115 quantitative data on the seagrass meadows of the Torres Strait at spatial scales relevant to 116 regional conservation and management needs. We provide species distributions and examine 117 the nutritional value of subtidal seagrasses for marine herbivores and the distribution of food resource quality in the Torres Strait. 118 119 120 2. Methods

121 2.1 Study area

122

123 The Torres Strait comprises a narrow stretch of water (150 km north-south and 250 km east-124 west) between Cape York, the northernmost tip of Queensland, Australia and southern Papua 125 New Guinea. It is divided longitudinally by two central ridge lines that are dissected by numerous channels and which often emerge as reefs and islands (Maxwell, 1968; Hopley, 126 127 1982; Harris, 1988; Pitcher et al., 2004). The Torres Strait has three main geographic regions: 128 (1) the western region, which extends westward from (but not including) a north-south string of 129 continental islands that extend from Cape York to Papua New Guinea; (2) the central region, 130 which lies between the continental islands and the Warrior Reef complex, and; (3) the eastern 131 region, which lies between the Warrior Reefs to the west and the Ribbon Reefs of the Great 132 Barrier Reef to the east (Figure 1).

134 2.2 General physiography

136	There are several large islands in the western region with fringing reefs, and reef platforms and
137	complex channel systems and wetlands. The western region is relatively shallow (< 20 m) and
138	its northern section is characterised by extensive sand waves (Harris, 1991; Long and Poiner,
139	1997; Heap et al., 2005). The central region is also shallow (< 20 m) with mostly small rocky
140	islands fringed by reef, including the westward island string and Orman Reefs. Mangroves are
141	found on some of the larger reefs (Long and Poiner, 1997). Water depths in the eastern region
142	range from 20 m at the Warrior Reefs to 100 and 4000 m at the western and eastern sides of the
143	Ribbon Reefs respectively (Long and Poiner, 1997; Pitcher et al., 2004).
144	5
145	The physical oceanography of Torres Strait is dominated by the tidal regime, which generates
146	extremely strong currents (Harris, 1991). Large sea level gradients exist across Torres Strait
147	due to the lack of phase between Coral Sea/ Gulf of Papua and Gulf of Carpentaria/ Arafura
148	Sea tidal cycles. The gradients result in alternating east-west currents (> $1 \text{ m}^3 \text{ s}^{-1}$) that keep
149	water vertically well mixed and shape the physical oceanography and biotic assemblages of the
150	region (Harris, 1991; Wolanski 1991; Long and Poiner, 1997; Pitcher et al., 2004). Tidal
151	currents and locally generated surface waves are responsible for re-suspension of sediments,
152	giving rise to a turbidity maximum in the central Torres Strait (Harris, 1991; Harris and Baker,
153	1991). Benthic sediments range from fine terrestrial muds near rivers to coarse carbonate sands
154	and gravels among coral reefs further from land (Harris, 1991; Harris and Baker, 1991; Pitcher
155	et al., 2004). Previous surveys found that seagrass meadows in the Torres Strait are sparsely
156	distributed over wide areas and are often restricted to intertidal areas leeward of coral reef
157	crests (Long and Poiner, 1997). This is probably due to the erosive effects of the strong
158	currents (up to 18 km/ hour) and high turbidity associated with the region (Long and Skewes,
159	1997).

. . .

161 2.3 Sampling design and implementation

162

163	Sub-tidal seagrass communities in the Torres Strait were sampled in a broad-scale survey
164	conducted between March and April, 2005. 168 sample site locations were selected according
165	to a stratified representative pattern (SRP). The SRP technique based sample site selection on
166	the spatial distribution of environmental correlates (e.g., depth, sediments, current stress)
167	determined from previous habitat studies in the Torres Strait to be significant factors in
168	biophysical analyses. The sampling region was segregated into relatively homogenous strata
169	based on environmental correlates from which sample sites were selected. The intensity of
170	sampling within each strata was optimised to match the expected diversity and variance
171	(Pitcher et al., 2004; Haywood et al., this issue).
172	
173	At each sample site a video camera was deployed along a 500 m transect to detect the presence
174	of seagrass. Where seagrass was detected, a 1.5 m wide epibenthic sled with a 10 mm (mesh
175	size) net backing was towed along the video transect path for approximately 200 m to collect
176	plant specimens. Sediment at each site was described using Folk's (1954) classification system
177	Water depth at each sample site was recorded relative to mean sea level (MSL). The research
178	vessel used to conduct the survey was the RV James Kirby, owned by James Cook University.
179	This steel hulled vessel is 19.6 m long with a draft of 2.15 m The size of the survey vessel
180	prevented shallow water and intertidal seagrasses (< 3 m) from being sampled.
101	

181

182 Seagrass collected was washed in seawater to remove sediment and epiphytes, sorted into

183 species, then frozen for transportation to the laboratory. Prior to nutritional analysis samples

184 were thawed and separated into above ground (stem and leaf) and below ground (root and

185 rhizome) components and dried to constant weight for at least 48 hours at 40°C. For each site,

- 186 the above and below-ground dry weights were recorded for each species prior to being finely
- 187 ground for nutrient profile analysis.
- 188
- 189 2.4 Near infra-red reflectance spectroscopy
- 190

191 Samples taken from 45 sites were analysed for a range of chemical constituents. Near infrared 192 reflectance spectroscopy (NIRS) was used to analyse the nutrient content of seagrass samples 193 following methods described by Lawler et al. (2006). This technique was chosen for its ability 194 to identify the composition of organic samples in a rapid, cost-effective and repeatable manner 195 (Shenk and Westerhaus, 1993; 1994). Calibration equations were developed to describe the 196 relationships between NIRS spectra and their matching nutrient values (Shenk and Westerhaus, 197 1991), derived from the following laboratory methods: (1) total nitrogen (N) colorimetrically 198 by the salicylate-hypochlorite method of Baethgen and Alley (1989); (2) total starch using the 199 thermostable a -amylase and amyloglucosidase method of McCleary et al., (1997); (3) in-vitro 200 dry matter digestibility (IVDMD) using Pepsin-Cellulase In-Vitro digestibility; (4) neutral 201 detergent fibre (NDF), acid detergent fibre (ADF) and lignin using the Foss fibre cap system 202 Fibretec 2023 (18 place); (5) total organic matter (OM) by straight ashing, and (6) watersoluble carbohydrate (WSC) by ethanol extraction. 203 204

205 2.5 Analyses

206

207 Analysis of relationships between seagrass characteristics and abiotic factors was conducted

- 208 using Statistica (v6, StatSoft, Inc. 2001) and S-PLUS (Insightful Corp). All error estimates are
- 209 given as \pm standard error. Maps of seagrass species and nutrient distribution were generated
- 210 from the benthic sled and NIRS data using ArcMap (Environmental Systems Research
- 211 Institute, Inc., Redlands, CA). Analysis of variance was used to test the effects of

212	environmental treatments on subtidal seagrass nutrient characteristics. Restricted maximum
213	likelihood (REML) analysis was used to compensate for the lack of balance in some treatment
214	combinations.
215	
216	3. Results
217	
218	3.1 Seagrass species distribution
219	
220	Seagrass was found at 56 (33.3 %) of the 168 sample sites. Eleven species were encountered
221	(Figure 2). Only the four most commonly occurring species (C. serrulata, H. spinulosa,
222	H. ovalis and S. isoetifolium), yielded enough dry-weight biomass (> 2 g DW) per sample site
223	to conduct nutrient analyses ($n = 45$ sites). These four dominant species typically occurred in
224	large (> 100 m ²) multispecific patches, separated by large gaps of bare sediment.
225	
226	Sub-tidal seagrass distribution in the Torres Strait displayed a clear east-west partitioning at a
227	regional scale $>15\ 000\ \text{km}^2$ (Figure 3). Sub-tidal seagrasses were common west of the Warrior
228	Reefs (<143°E) and generally absent within eastern sites (>143°E) which coincided with
229	deeper water (mean = 25.1 ± 1.2 m below MSL) and sandy sediments. Sub-tidal seagrasses in
230	central Torres Strait displayed clear north-south partitioning, with seagrasses common north of
231	the Orman Reefs (>10.0°S). Seagrasses were only found in the southern part of the western
232	region as few samples were collected in the north-west.
233	
234	Seagrass was found most often in sites with sediments classified as muddy sand, gravelly sand
235	and gravel (Figure 4). No seagrass was found growing at sites where the sediment was slightly
236	gravelly sandy mud or gravelly mud. H. spinulosa, H. ovalis and C. serrulata were found

237 growing in the broadest range of sediment types (7 of the 10 sediment categories recorded on

238	this cruise). S. isoetifolium was generally restricted to medium sediments (gravelly muddy sand
239	to sandy gravel) and was present in 5 of the 10 sediment categories.
240	
241	Subtidal seagrasses in the Torres Strait were found at a maximum depth of 33.5m below MSL
242	(S. isoetifolium and C. serrulata) (Figure 3, Site 2). Although the maximum depths recorded for
243	seven of the 11 seagrass species were greater than 20 m, presence at this depth was rare (Figure
244	5). The mean combined depth of all subtidal seagrass was 12.6 ± 0.8 m below MSL. With the
245	exception of <i>C. rotundata</i> , the mean depth each species was found at was less than 15m.
246	C. serrulata and S. isoetifolium had the broadest depth range of the eleven species found in the
247	Strait (30.3 m). Seagrass species number (8 species) was highest in shallow water <5 m (Figure
248	5).
249	
250	3.2 Seagrass nutrients
251	
252	There were no significant effects of individual sample site or the latitude of individual sample
253	sites on the nutrient concentrations of any seagrass species (all REML analysis p -values >
254	0.05). The only species which had a significant relationship between seagrass tissue nutrients
255	and depth was <i>S. isoetifolium</i> , where starch concentration decreased with depth ($r^2 = 0.58$, p =
256	0.0002) (Figure 6).
257	
258	3.2.1. Within plants
259	
260	For all species, total nitrogen was higher in the above-ground tissue components than in the
261	below-ground components. Conversely, total starch was higher in below-ground tissue
262	components than in above-ground components for H. ovalis and S. isoetifolium (Table 1,

263	Figure 7). Neutral detergent fibre was higher in above-ground plant tissue than in below-
264	ground tissue for all species except H. spinulosa.
265	
266	3.2.2. Between species
267	
268	The four seagrass species (whole plant) differed significantly from each other for total starch
269	(df = 3, F = 21.86, $p < 0.001$), water-soluble carbohydrates (df = 3, F = 14.78, $p < 0.001$), <i>in</i> -
270	<i>vitro</i> dry matter digestibility (df = 3, F = 131.04, $p < 0.001$), organic matter (df = 3, F = 74.0, p
271	<0.001), acid detergent fibre (df = 3, F = 47.52, p <0.001), neutral detergent fibre (df = 3, F =
272	41.69, $p < 0.001$), and lignin (df = 3, F = 12.11, $p < 0.001$). However, nitrogen concentration
273	was not significantly different between seagrass species (df = 3, F = 2.46, $p = 0.07$) (Table 1,
274	Figure 7).
275	
276	The greatest inter-species nutrient variation was for starch concentration Total starch content
277	(whole plant) was highest in H. ovalis and lowest in S. isoetifolium (Tukey HSD post hoc test
278	mean difference = 1.35, se = 0.23, $p < 0.001$). <i>H. ovalis</i> had the highest seagrass <i>in-vitro</i> dry
279	matter digestibility (mean = $83.2 \pm 0.66\%$), with the greatest significant interspecies difference
280	in IVDMD occurring between <i>H. ovalis</i> and <i>C. serrulata</i> (mean difference = 16.8 ± 1.11 %, <i>p</i>
281	<0.001).
282	
283	4. Discussion
284	
285	This survey provides a valuable snapshot of the species distribution and nutritional value of
286	sub-tidal Torres Strait seagrasses. The Torres Strait seagrass communities we sampled had high
287	diversity, with eleven species recorded. Subtidal seagrass communities were primarily
288	restricted to the central and western regions of the Torres Strait. The eastern region, comprising

289	nearly half the Torres Strait, was mostly devoid of seagrass. Our findings support previous
290	surveys of Torres Strait seagrass distribution and species diversity (Pitcher et al., 1992, 2004;
291	Long and Poiner, 1997), indicating this distribution has remained constant for over a decade.
292	Management to protect sub-tidal seagrass resources that are important for large marine
293	herbivores such as dugongs and turtles should be focused on the extensive sub-tidal seagrass
294	communities of the central and western regions. Long and Poiner (1997) found the eastward
295	decrease of sub-tidal seagrass in Torres Strait correlates with increased water turbidities. In the
296	Torres Strait, it is likely that the high current flows, close proximity of land masses, and regions
297	with high rainfall lead to generally more turbid waters than those found in adjacent waters such
298	as the Great Barrier Reef lagoon.
299	S
300	The physical variables that we examined explain relatively little of the spatial patterns in sub-
301	tidal seagrass, other than an absence of seagrass in waters deeper than 33.5 m and an absence of
302	seagrass in fine, muddy sediments. Seagrasses have been found at depths of up to 60 m in the
303	Great Barrier Reef (Coles et al., 2000). T. hemprichii, C. rotundata, H. uninervis and S.
304	isoetifolium were recorded at depths of more than 25 m. This is considerably deeper than the 5
305	- 15 m range these species have been found in previous studies of seagrass meadows along the
306	north eastern coast of Australia (Lee Long et al., 1996; Coles et al., 2000). Environmental
307	conditions specific to the Torres Strait (e.g., constant nutrient availability, high water clarity,
308	high water temperatures) may allow these species to grow at depths beyond their usual limits.
309	Exploiting deeper than usual habitats may not be without metabolic cost to the plant. The starch
310	content of S. isoetifolium, a species that typically occurs in intertidal/shallow sub-tidal waters 5
311	- 12 m (Coles et al., 2000), decreased significantly with increased depth; presumably making it
312	less nutritious to subtidally foraging herbivores.

314	This study is the first nutritional analysis of sub-tidal seagrasses in Torres Strait, and the first
315	study to provide a map comparing the nutritional value of sub-tidal meadows in the Torres
316	Strait region (Figure 8). The nutritional profiles of the four tropical seagrasses we sampled
317	were generally consistent with previous studies of the same species (see Lanyon, 1991; de
318	Iongh et al., 1995; Aragones, 1996; Udy and Dennison, 1997; Mellors, 2003; Yamamuro et al.,
319	2004; Yamamuro and Chirapart, 2005; Sheppard et al., in press). The nitrogen content of the
320	leaves of all species of seagrass studied here was within the range previously reported for
321	tropical seagrasses (1.8% N DW, cf. Duarte, 1990). The preponderance of starch in the below-
322	ground component of these tropical species confirms previous findings that seagrass rhizomes
323	provide a rich source of starch (Birch, 1975; Masini, 1983; Lanyon, 1991; Mellors, 2003;
324	Aragones et al., 2006; Sheppard et al., <i>in press</i>).
325	
326	The 4.1 % (± 0.3 se) whole-plant mean lignin concentration for <i>H</i> . <i>ovalis</i> sampled in the Torres
327	Strait was considerably lower than the $9 - 10$ % range recorded by Aragones et al. (2006) for
328	<i>H. ovalis</i> in tropical north Queensland, and lower than the 15 % (\pm 0.96 se) recorded for <i>H</i> .
329	ovalis in sub-tropical Queensland by Sheppard et al. (in press) and by Bité, J. (pers. comm.).
330	These previous three studies on seagrass nutrient content were conducted using the same
331	methodology as ours. Therefore, this decrease in seagrass lignin concentration with latitude
332	may reflect regional differences driven by environmental factors specific to each study area.
333	Also, the previous studies collected primarily intertidal <i>H. ovalis</i> ; the deep water seagrasses we
334	collected may have invested more energy into compensating for reduced photosynthesis in
335	light-limited depths instead of accumulating lignin. Reduced wave action in deep water may
336	reduce the need for plant structural carbohydrates.

338	The selection of food resources by dugongs is believed to be determined by the availability of
339	seagrass species of high nutrient quality (Heinsohn and Birch, 1972; Marsh et al., 1982;
340	Lanyon et al., 1989; Preen, 1995; Aragones et al., 2006; Sheppard et al., in press). Availability
341	of starch and nitrogen determine population fitness in herbivores, and these are the most cited
342	indicators of habitat nutritional quality in large terrestrial grazers (e.g., Illius and Gordon, 1993;
343	Van Wieren, 1996; Prins and Olff, 1998; Augustine and Frank, 2001; Mutanga et al., 2004). To
344	provide the metabolic reserves required to sustain reproduction dugongs must consume plants
345	high in nitrogen and starch (Kwan, 2002; Sheppard et al., in press). H. ovalis was the most
346	nutritious of the four most commonly encountered sub-tidal seagrass species in the Torres
347	Strait, with high nitrogen, starch and digestibility and low fibre levels. Whole - plant H. ovalis
348	possessed nearly twice as much starch as S. isoetifolium. However, the below-ground starch
349	content of <i>H. ovalis</i> was >20 % higher than the above-ground component. Consequently, sub-
350	tidal nitrogen and starch distributions in the Torres Strait were concentrated where H. ovalis
351	was prevalent, particularly around the south-west and north-central regions. The nutritional
352	superiority of <i>H. ovalis</i> coupled with its broad geographic and depth distribution likely make it
353	an important seagrass species for dugong foraging subtidally in the Torres Strait. H. ovalis is
354	consistently present in dugong stomach content samples and in the seagrass meadows dugongs
355	target (Marsh et al., 1982; de Iongh et al., 1995; Preen, 1995; Aragones and Marsh, 2000;
356	Masini et al., 2001; André and Lawler, 2003).

357

Although *S. isoetifolium* had considerably less starch content (particularly with increasing depth) and digestibility than *H. ovalis*, it had slightly higher nitrogen content and lower fibre and lignin levels. Given its similar geographic range to *H. ovalis*, *S. isoetifolium* may also constitute an important food resource. André et al. (2005) found a high proportion of *S. isoetifolium* amongst the seagrasses sampled from the stomachs of dugongs from the Torres Strait, in contrast to low levels of *H. ovalis*. *S. isoetifolium* is generally a larger plant than *H.*

364	ovalis. S. isoetifolium also forms denser meadows and has higher total biomass in the Torres
365	Strait than H. ovalis (Long and Poiner, 1997). Food seagrasses that occur in concentrated
366	patches will presumably increase the foraging efficiency of a grazing herbivore by reducing
367	search costs and maximising intake rates for grazing effort. S. isoetifolium provides less
368	nutritional energy than H. ovalis when compared on an individual plant basis; however the
369	large morphology, dense patch characteristics and high prevalence (total availability) of S .
370	isoetifolium may enhance its dietary value to a foraging dugong. Variability in seagrass
371	palatability, although not tested in this study, may also play a role in dugong diet selection
372	(André et al., 2005). For instance, seagrass tannin concentrations were not tested.
373	
374	Green turtles appear to be more flexible and opportunistic foragers than dugongs. In the Torres
375	Strait, the green turtle populations are dominated by immature animals that are predominantly
376	seagrass feeders in seagrass areas or algal-feeders in areas with abundant algae (Garnett et al.,
377	1985; Lanyon et al., 1989; Read, 1991; Forbes, 1996; Brand-Gardner et al., 1999; Andre et al.,
378	2005). When feeding on seagrass, green turtles graze at the base of the shoots, where they
379	obtain the younger leaves, without disturbing the below ground plant parts (Lanyon et al,
380	1989; Aragones and Marsh, 2000).
381	
382	Similar to dugongs, immature green turtles generally select food on the basis of high nitrogen
383	and low fibre levels (Ross, 1985; Jupp et al., 1996; Brand-Gardner et al., 1999; Andre et al.,
384	2005). In the Torres Strait, immature green turtles are reported to feed predominately on T .
385	hemprichii and E. acoroides, but also ingest other species to a less degree including T. ciliatum,

386 *Cymodocea* spp, *H. uninervis, S. isoetifolium, H. ovalis* and *H. spinulosa* (Garnett et al., 1985;

387 Andre et al., 2005).

389 Although green turtles generally spend 90% of their time feeding in waters shallower than 4 m 390 (Hays et al., 2002), this appears predominately a consequence of greater seagrass abundance at 391 these depths. Feeding at depths to 20m is considered no more exhaustive for green turtles than 392 feeding shallower than 4m, as at deeper depths individuals can still attain near-neutral 393 buoyancy after diving with full lungs (Hays et al., 2000, 2001, 2002). Subtidal seagrass 394 resources therefore provide a suitable alternative for green turtles in the event of shallow water 395 seagrass loss caused by impacts at both localised (e.g., land use and development) or regional 396 (e.g., climate change) scales. 397 398 The sampling methods used in this study enabled a large geographic region to be surveyed in a 399 relatively short time period, albeit with some compromises. Use of a sled for collecting samples 400 may have over-represented shallow-rooted species such as H. ovalis at the expense of deep-401 rooted species such as T. hemprichii. Other seagrass species which contribute significantly to 402 the diets of marine herbivores, such as T. hemprichii, E. acoroides and H. uninervis, are 403 commonly found on reefs and in shallow intertidal waters around continental islands in Torres Strait (Long and Poiner, 1997); areas that we were unable to sample because of the size of our 404 405 survey vessel Nevertheless, given that we encountered eleven of the twelve seagrass species 406 recorded by previous studies, we believe that our sampling regime was intense enough to 407 capture a realistic broad-scale representation of sub-tidal seagrass species distribution in the Torres Strait. 408

409

Although dugongs have been observed in deep waters (> 30 m) they are generally restricted to
foraging in less than 20-30 m depths due to physiological and energetic constraints (Marsh et
al., 1978; Chilvers et al., 2004; Sheppard et al., 2006). Consequently, dugong population fitness
is likely determined by the availability of seagrass meadows of high nutritional quality in water

414	< 20 m deep. We identify two optimal subtidal sites for dugongs foraging in the Torres Strait,
415	based on high concentrations of seagrass starch located in comparatively low water depths (<
416	20 m); (1) a south-western site, and (2) the north-central site (Figure 8). Both sites are at a
417	distance of more than 20 km from inhabited islands and areas of disturbance and high boat
418	traffic. The north-central site is also situated in a zone permanently closed to prawn trawling. It
419	has been previously recognized as an area important to dugong based on the large populations
420	of dugongs consistently observed during aerial surveys in 1987, 1991, 1996 and 2001 (Marsh et
421	al., 2004a, 2004b). While trawling is permitted south of 10°28 in the south-western site (Torres
422	Strait Prawn Fishery Working Group, 1999) the area was identified as a site important for
423	dugong and established in 1985 as a management zone within which dugong fishing is not
424	permitted (Commonwealth of Australia, 2003).
425	
10.0	
426	Dugongs and green turtles are fished in the Torres Strait by Papua New Guinea and Australian
427	traditional fishers for food and ceremony. Fishing for dugong in Torres Strait at the present
428	level is considered unsustainable in the Torres Strait (Heinsohn et al., 2004; Marsh et al.,
429	2004b). However, providing appropriate management advice is difficult when the dugong
430	fishery is not simply a fishery but part of the rich cultural and traditional ceremonial life in
431	Torres Strait, involves two countries with differing needs and approaches, and where data is
432	limited on dugong density and catches from all locations where dugongs are found (e.g. Marsh
433	et al., 1997, 2004a). Our approach has been to map, using quantitative metrics, areas of quality
434	food at depths accessible for feeding. This adds to the knowledge available for fisheries
435	managers and Torres Strait Islander fishers and will assist in providing an understanding of the
436	habitat issues important for sustainable management of the dugong fishery.

5. Conclusions

439

440 1. The Torres Strait has eleven species of tropical seagrasses in sub-tidal waters. There are 441 large spatial discontinuities in the meadows with almost no seagrass east of the Warrior Reef 442 complex. In this study seagrass was prevalent in the north-central and south-west, a distribution 443 pattern that is likely to be a consistent feature of the region. 444 2. The seagrass meadows in the Torres Strait are habitat for juvenile penaeid prawns and food 445 for green turtle and dugong. Turtle and dugong populations in the Torres Strait are fished and 446 managed as traditional fisheries as part of the Torres Strait Treaty agreement between Australia 447 and Papua New Guinea. Present fishing levels are likely to be unsustainable and understanding the relationship between the animals and their food sources will assist in providing effective 448 449 management advice. 450 3. For all seagrass species, the above-ground component (shoots and leaves) possessed greater 451 nitrogen concentration than the below-ground component (roots and rhizomes), which 452 possessed greater starch concentration. H. ovalis possessed the highest total starch and highest 453 digestibility, as well as the lowest fibre. The high relative abundance and quality nutrient 454 characteristics of *H. ovalis* make it an important source of energy to marine herbivores that 455 forage sub-tidally in the Torres Strait. 456 457 Acknowledgements 458 459 We thank Mick Haywood, Greg Smith, Ted Wassenberg and Karl Forcey of CSIRO, and 460 Colleen Strickland and Merrick Eckins of Que ensland Museum for assistance with data 461 collection. We also thank Bob Mayer and Angela Reid of OPDI&F for their assistance with the

462 statistical analysis, and Darren Coker for assistance with lab work. This project was funded by

the CRC Torres Strait as a collaborative project between the Department of Primary Industries

- and Fisheries (Northern Fisheries Centre, Marine Ecology Group), Commonwealth Science and 464
- 465 Industrial Research Organisation, Geoscience Australia, and the Queensland Museum.

466

- 467 We thank the Torres Strait Island Traditional Inhabitants for access to their traditional waters
- 468 and fishing grounds for this research and appreciate the spirit of cooperation in developing an
- 469 understanding of the marine resources of the region.

Accepted manuscript

References

André, J., Lawler, I., 2003. Near infrared spectroscopy as a rapid and inexpensive means of dietary analysis for a marine herbivore, the dugong *Dugong dugon. Marine Ecology Progress Series* 257, 259-266.

André, J., Gyuris, E., Lawler, I., 2005. Comparisons of the diets of sympatric dugongs and green turtles on the Orman Reefs, Torres Strait, Australia. *Wildlife Research* 32, 53-62.

Aragones, L.V., 1996. Dugongs and Green Turtles: Grazers in the Tropical Seagrass Ecosystem. Ph.D. Thesis, James Cook University, Townsville, Australia.

Aragones, L.V., Marsh, H.D., 2000. Impact of dugong grazing and turtle cropping on tropical seagrass communities. *Pacific Conservation Biology* 5, 277-288.

Aragones, L., Lawler, I.R., Foley, W.J. and Marsh, H., 2006. Dugong grazing and turtle cropping: grazing optimization in tropical seagrass systems? *Oecologia* 149(4), 635-47.

Augustine, D. J., Frank, D.A., 2001. Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. *Ecology* 11, 3149-3162.

Baethgen, W.E., Alley, M.M., 1989. A manual colormetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. *Communications in Soil Science and Plant Analysis* 20, 961-969.

Birch, W.R., 1975. Some chemical and calorific properties of tropical marine angiosperms compared with those of other plants. *Journal of Applied Ecology* 12, 201-212

Brand-Gardner, S.J., Lanyon, J.M., Limpus, C.J., 1999. Diet selection by immature green turtles, *Chelonia mydas*, in subtropical Moreton Bay, South-East Queensland. *Australian Journal of Zoology* 47
(2), 181-191.

Bridges, K.W., Phillips, R.C., Young, P.C., 1982. Patterns of some seagrass distribution in the Torres Strait, Queensland. *Australian Journal of Marine and Freshwater Research* 33(2) 273 – 283.

Butler, A., Jernakoff, P. (Eds.), 1999. Seagrass in Australia: Strategic Review and Development of anR&D Plan. CSIRO Publishing, Collingwood, Australia.

Cebrián, J., Duarte, C.M., 1997. Patterns in leaf herbivory on seagrasses. Aquatic Botany 60, 67-82.

Chilvers, B. L., Delean S., Gales N. J., Holley D. K., Lawler I. R., Marsh H., Preen A. R., 2004. Diving behaviour of dugongs, *Dugong dugon. Journal of Experimental Marine Biology and Ecology* 304, 203–224.

Coles, R. G., Lee Long, W. J., Squire, B. A., Squire, L. C. and Bibby, J. M. 1987. Distribution of seagrasses and associated juvenile commercial penaeid prawns in north-eastern Queensland waters (Australia). *Australian Journal of Marine and Freshwater Research* 38, 103–120.

Coles, R. G., Lee Long, W. J., McKenzie, L. J., Roelofs, A. J., De'ath, G., 2000. Stratification of seagrasses in the Great Barrier Reef World Heritage Area, Northeastern Australia, and the implications for management. *Biol. Mar. Medit* 7, 345–348.

Coles, R.G., Fortes, M.D., 2001. Seagrass Protection Policy. In: Short, F.T., Coles, R.G. (Eds.), Global Seagrass Research Methods. Elsevier Science BV, Amsterdam pp, 445-464.

Coles, R.G., McKenzie, L.J., Campbell, S.J., 2003. The seagrasses of eastern Australia. In: Green EP, Short FT, Spalding MD (Eds.), The World Atlas of Seagrasses: present status and future conservation. University of California Press, pp 131-147.

Commonwealth of Australia, 2003. Torres Strait Dugong Fishery: Prohibitions on the Taking of Dugongs (Area, Gear and Method Restrictions). Fisheries Management Notice No. 65, Gazette Special, No. S42.

Costanza, R., D'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M., 1997. The value of the world's ecosystem services and natural capital. *Nature* 387, 253-260.

de Iongh, H.H., Wenno, B.J., Meelis, E., 1995. Seagrass distribution and seasonal biomass changes in relation to dugong grazing in the Moluccas, East Indonesia. *Aquatic Botany* 50, 1-19.

Duarte, C.M., 1990. Seagrass nutrient content. Marine Ecology Progress Series 6(2), 201-207.

Duarte, C. M. 2002. The future of seagrass meadows. Environmental Conservation 29(2), 192-206.

Duarte, C.M., Chiscano, C.L., 1999. Seagrass biomass and production: a reassessment. *Aquatic Botany* 65, 159–174.

Folk, R.L., 1954. The distinction between grainsize and mineral composition in sedimentary-rock nomenclature. *Journal of Geology* 62, 344–359.

Forbes, G.A., 1996. The diet and feeding ecology of the green sea turtle (*Chelonia mydas*) in an algalbased coral reef community. Ph.D. thesis, James Cook University of North Queensland, Cairns, Queensland, Australia.

Garnett, S.T., Price, I.R., Scott, F.J., 1985. The diet of the green turtle, *Chelonia mydas* (L.), in Torres Strait. *Australian Wildlife Research* 12, 103-12.

Harris, P.T., 1988. Sediments, bedforms and bedload transport pathways on the continental shelf adjacent to Torres Strait, Australia - Papua New Guinea. *Continental Shelf Research* 8, 979-1003.

Harris, P.T., 1991. Sedimentation at the juncture of the Fly River Delta and Northern Great Barrier
Reef. In: Lawrence, D., Cansfield-Smith, T. (Eds.), Torres Strait Baseline Study Conference, Cairns,
Queensland (Australia), Nov 19 1990 Sustainable Development for Traditional Inhabitants of the Torres
Strait Region. Great Barrier Reef Marine Park Authority Workshop Series 16, Townsville, Australia,
pp. 59-85.

Harris, P.T., Baker, E.K., 1991. The nature of sediments forming the Torres Strait turbidity maximum. *Australian Journal of Earth Science* 38, 65-78.

Hays, G.C., Adams, C.R., Broderick, A.C., Godley, B.J., Lucas, D.J., Metcalfe, J.D., Prior, A.A., 2000. The diving behaviour of green turtles at Ascension Island. *Animal Behaviour* 59, 577-586.

Hays, G.C., A ° kesson, S., Broderick, A.C., Glen, F., Godley, B.J., Luschi, P., Martin, C., Metcalfe, J.D., Papi, F., 2001. The diving behavior of green turtles undertaking oceanic migration to and from Ascension Island: dive durations, dive profiles and depth distribution. *Journal of Experimental Biology* 204, 4093–4098.

Hays, G.C., Glen, F., Broderick, A.C., Godley, B.J., Metcalfe, J.D., 2002. Behavioral plasticity in a large marine herbivore: contrasting patterns of depth utilisation between two green turtles (*Chelonia mydas*) populations. *Marine Biology* 141, 985–990.

Haywood, M.D.E., Pitcher, C.R., Ellis, N., Wassenberg, T.J., Smith, G., Forcey, K., McLeod, I., Chetwynd, D., Carter, A., Strickland, C., Coles, R., Hooper, J., Harris, P., Heap, A. (*in review*) Mapping and Characterisation of the inter-reefal benthic assemblages of the Torres Strait. *Continental Shelf Research*.

Heap, A. D., Hemer, M., Daniell, J., Mathews, E., Harris, P. T., Kerville, S., O'Grady L., 2005.
Biophysical Processes in the Torres Strait Marine Ecosystem –post cruise report. Geosciences Australia,
Record 2005/11, 112p.

Heinsohn, G. E., Birch, W. R., 1972. Foods and feeding habits of the dugong, *Dugong dugon* (Erxleben), in northern Queensland, Australia. *Mammalia* 36, 414-422.

Heinsohn, R., Lacy, R.C., Lindenmayer, D.B., Marsh, H., Kwan, D., and Lawler, I., 2004.Unsustainable harvest of dugongs in Torres Strait and Cape York (Australia) waters: two case studies using population viability analysis. *Animal Conservation* 7, 417-425.

Hopley, D., 1982. The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs. Brisbane, John Wiley and Sons.

Illius, A.W., Gordon, I.J., 1993. Diet selection in mammalian herbivores: constraints and tactics. In: Hughes, R.N. (Ed.), Diet Selection. Blackwell Scientific Publication, Oxford, United Kingdom, pp. 157-181.

Jupp, B. P., Durako, M. J., Kenworthy, W. J., Thayer, G. W., Schillak, L., 1996. Distribution, abundance, and species composition of seagrasses at several sites in Oman. *Aquatic Botany* 53 (3-4), 199-213.

Kirkman, H., 1996. Baseline and monitoring methods for seagrass meadows. *Journal of Environmental Management* 47, 191–201.

Kwan, D., 2002. Towards a sustainable indigenous fishery for dugongs in Torres Strait: A contribution of empirical data and process. Ph.D. Thesis, James Cook University, Townsville, Australia.

Lanyon, J. M., Limpus, C., Marsh, H., 1989. Dugongs and turtles: grazers in the seagrass system. In: Larkum, A. W. D., McComb, A. J., Shepherd, S. A. (Eds.), Biology of Australian Seagrasses: A

Treatise on the Biology of Seagrasses with Special Reference to the Australian Region. Elsevier, Amsterdam, The Netherlands, pp. 610-634.

Lanyon, J., 1991. The nutritional ecology of the dugong (*Dugong dugon*) in tropical north Queensland. Ph.D. Thesis, Monash University, Victoria, Australia.

Lawler, I.R., Aragones, L.V., Foley, W.J., Berding, N., Marsh, H., 2006. Near infrared reflectance spectroscopy is a rapid, cost-effective predictor of seagrass nutrients. *Journal of Chemical Ecology* 32(6), 1353-1365.

Lee Long, W. J., Coles, R. G., McKenzie, L. J., 1996. Deepwater seagrasses in Northeastern Australia -How deep, how meaningful. In: Kuo, J., Phillips, R. C., Walker, D. I., Kirkman, H. (Eds.), Seagrass Biology: Proceedings International Workshop, Rottnest Island, Western Australia. The University of Western Australia, Nedlands, pp 41–50.

Long, B.G., Poiner, I.R., 1997. Seagrass communities of Torres Strait, Northern Australia. *Marine Research*. CSIRO. Report: MR-GIS 97/6

Long, B.G., Skewes, T., 1997. The potential influence of land runoff on distribution and abundance of seagrass on the reefs in Torres Strait. *Marine Research*. CSIRO. Report: MR-GIS 97/6.

Marsh, H., Spain, A. V., Heinsohn, G., 1978. Physiology of dugong. *Comparative Biochemistry and Physiology*. *A. Physiology* 61A, 159-168.

Marsh, H., Channels, P.W., Heinsohn, G.E., Morrissey, J., 1982. Analysis of stomach contents of dugongs from Queensland. *Australian Wildlife Research* 9, 55-67.

Marsh, H., Harris, N. M. & Lawler, I. R., 1997. The sustainability of the indigenous dugong fishery in Torres Strait, Australia/Papua New Guinea. *Conservation Biology* 11, 1375–1386.

Marsh, H., Lawler, I. R., Kwan, D., Delean, S., Pollock, K., Alldredge, M., 2004a. Aerial surveys and the potential biological removal technique indicate that the Torres Strait dugong fishery is unsustainable. *Animal Conservation* 7, 435–443.

Marsh, H., Lawler, I. R., Kwan, D., Delean, S., Pollock, K., Alldredge, M., 2004b. Dugong distribution and abundance in Torres Strait. Australian Fisheries Management Authority Torres Strait Research Program Final Report. AFMA Project Number R 01/0895.

Masini, R. J., 1983. The non-structural carbohydrate contents of seagrasses. B.Sc. Honours Thesis, University of Western Australia.

Masini, R.J., Anderson, P.K., McComb, A.J., 2001. A *Halodule*-dominated community in a subtropical embayment: physical environment, productivity, biomass, and impact of dugong grazing. *Aquatic Botany* 71, 179–197.

Maxwell, W. G. H., 1968. Atlas of the Great Barrier Reef. Amsterdam, Elsevier.

McCleary, B.V., Gibson, T.S., Mugford, D.C., 1997. Measurement of total starch in cereal products by amyloglucosidase – a-amylase. *Journal of the Association of Official Analytical Chemists* 80, 571-579.

McKenzie, L.J., Finkbeiner, M.A., Lorlam, H., 2001. Methods for mapping seagrass distribution. In: Short, F.T., Coles, R.G. (Eds.), Global Seagrass Research Methods. Elsevier Science B.V., Amsterdam, The Netherlands, pp. 101-121.

Mellors, J.E., 2003. Sediment and nutrient dynamics in coastal intertidal seagrass of north eastern tropical Australia. Ph.D. Thesis, James Cook University, Townsville, Australia.

Mutanga, O., Prins, H.H.T., Skidmore, A.K., Van Wieren, S.E., Huizing, H., Grant, R., Peel, M., Biggs,
H., 2004. Explaining grass-nutrient patterns in a savannah rangeland of southern Africa. *Journal of Biogeography* 31, 819-829.

Perry, C. J., Dennison, W. C., 1999. Microbial nutrient cycling in seagrass sediments. AGSO *Journal of Australian Geology & Geophysics* 17, 227–231.

Pitcher R., T. D. Skewes, D. M. Dennis and J. H. Prescott 1992. A Distribution of Seagrasses,
Substratum Types and Epibenthic Macrobiota in Torres Strait, with Notes on Pearl Oyster Abundance. *Australian Journal of Marine and Freshwater Research* 43, 409-19.

Pitcher, R., Condie, S., Ellis, N., McLeod, I., Haywood, M., Gordon, S., Skewes, T., Dunn, J., Dennis,
D., Cotterell, L., Austin, M., Venables, B., Taranto, T., 2004. Torres Strait Seabed and Water-Column
Data Collation, Biophysical Modelling and Characterization. CSIRO Marine Research, Hobart,
Tasmania, Australia. Available online at:

http://www.environment.gov.au/coasts/mbp/publications/pubs/torres-characterisation.pdf

Preen, A.R., 1995. Impacts of dugong foraging on seagrass habitats: Observational and experimental evidence for cultivation grazing. *Marine Ecology Progress Series* 124, 201-213.

Prins, H.H.T., Olff, H., 1998. Species richness of African grazing assemblages: toward a functional explanation. In: Newbery, D.M., Prins, H.H.T., Brown, N.D. (Eds.), Dynamics of Tropical Communities. Blackwell Scientific, Oxford, United Kingdom, pp. 449-490.

Read, M. A., 1991. Observations on the feeding ecology of immature green turtles, *Chelonia mydas*, in the Moreton Banks region of Moreton Bay, South East Queensland. B.Sc. (Hons.) Thesis, Department of Zoology, University of Queensland, Brisbane.

Ross, J.P., 1985. Biology of the green turtle, *Chelonia mydas*, on an Arabian feeding ground: *Journal of Herpetology* 19, 459–468.

Schaffelke, B., Mellors, J. E. and Duke, N.C., 2005. Water quality in the Great Barrier Reef region: responses of mangrove, seagrass and macroalgal communities. *Marine Pollution Bulletin* 51, 279–296

Shenk, J.S., Westerhaus, M.O., 1991. New standardisation and calibration procedures for NIRS analytical systems. *Crop Science* 31, 1694-1696.

Shenk, J.S., Westerhaus, M.O., 1993. Analysis of agriculture and food products by near infrared reflectance spectroscopy. Infrasoft International, Port Matilda, United States of America.

Shenk, J.S., Westerhaus, M.O., 1994. The application of near infrared spectroscopy (NIRS) to forage analysis. In: Fahey, G.C.J., Mosser, L.E., Mertens, D.R., Collins, M. (Eds.), National Conference on Forage Quality Evaluation and Utilization. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, United States of America, pp. 406–449.

Sheppard, J.K., Preen, A.R., Marsh, H., Lawler, I.R., Whiting, S.D., Jones, R.E., 2006. Movement heterogeneity of dugongs, *Dugong dugon* (Müller) over large spatial scales. *Journal of Experimental Marine Biology and Ecology* 334, 64-83.

Sheppard, J.K., Lawler, I.R., Marsh, H., *in press*. Seagrass as pasture for seacows: landscape-level habitat evaluation. *Estuarine, Coastal and Shelf Science*, doi:10.1016/j.ecss.2006.07.006.

Short, F.T., Willie-Echeverria, T.P., 1996. Natural and human-induced disturbance of seagrasses. *Environmental Conservation* 23, 17-27.

Torres Strait Prawn Fishery Working Group, 1999. Torres Strait Prawn Fishery Bycatch Action Plan. Commonwealth of Australia, Canberra, Australia.

Udy, J.W., Dennison, W.C., 1997. Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. *Journal of Experimental Marine Biology and Ecology* 217, 253-277.

Van Wieren, S.E., 1996. Do large herbivores select a diet that maximizes short-term energy intake rate? *Forest Ecology & Management* 88(1-2), 149-156.

Walker, D.I., 1989. Seagrass in Shark Bay: the foundations of an ecosystem. In: Larkum, A.W.D., McComb, A.J., Shepherd, S.A. (Eds.), Seagrasses: A Treatise on Seagrasses with Special Reference to the Australian Region. Elsevier, Amsterdam, The Netherlands, pp. 182–210.

Watson, R.A., Coles, R.G., Lee Long, W.J., 1993. Simulation estimates of annual yield and landed value for commercial penaeid prawns from a tropical seagrass habitat, northern Queensland, Australia. *Australian Journal of Marine and Freshwater Research* 44(1), 211-220.

Wolanski, E., 1991. A review of the physical oceanography of Torres Strait. In: Lawrence, D.,
Cansfield-Smith, T. (Eds.), Torres Strait Baseline Study Conference, Cairns, Queensland (Australia),
Nov 19 1990 Sustainable Development for Traditional Inhabitants of the Torres Strait Region. Great
Barrier Reef Marine Park Authority Workshop Series 16, Townsville, Australia, pp. 133-141.

Yamamuro, M., Aketa, K., Uchida, S., 2004. Carbon and nitrogen stable isotope ratios of the tissues and gut contents of a dugong from the temperate coast of Japan. *Mammal Study* 29, 179-183.

Yamamuro, M., Chirapart, A., 2005. Quality of the seagrass *Halophila ovalis* on a Thai intertidal flat as food for the dugong. *Journal of Oceanography* 61, 183-186.

Table and Figure Captions

 Table 1. Mean % nutrient concentrations for above and below-ground plant fractions of the

 four dominant species of sub-tidal seagrass sampled in the Torres Straits.

Figure 1. Map of Torres Strait showing the jurisdictional boundaries and spatial zones of the study area (adapted from Long and Poiner, 1997; Pitcher et al., 2004).

Figure 2. Frequencies of seagrass species encountered from 168 sub-tidal sample sites in the Torres Strait.

Figure 3. Seagrass species distribution from 168 sample points across the Torres Straits. (HO = H. ovalis, SI = S. isoetifolium, CS = C. serrulata, HS = H. spinulosa, HU = H. uninervis (wide), TH = T. hemprichii, EA = E. acoroides, HD = H. decipiens, HC = H. capricorni, CR = C. rotundata, TC = T. ciliatum).

Figure 4. Percentage of sites with seagrass present (all species pooled) for each sediment category. Sediment is classified from fine (slightly gravelly sandy mud) to coarse (gravel).

Figure 5. Mean depth and range (below msl) for 11 species of seagrass present in Torres Strait subtidal waters.

Figure 6. Negative linear relationship between water depth and starch content for *S*. *isoetifolium*.

Figure 7. Plots of (A.) mean seagrass nitrogen and starch concentrations, and; (B.) mean *invitro* dry matter digestibility (IVDMD) and acid detergent fibre (ADF) (HO = H. *ovalis*, SI = S.

isoetifolium, CS = C. *serrulata* and HS = H. *spinulosa*). L = leaves, stems and shoots (above ground), R = roots and rhizomes (below ground).

Figure 8. The north-central and south-west sites are optimal dugong foraging sites in the Torres Strait with high seagrass starch concentrations and shallow water (3-20 metres). The diagonal lines represent a dugong sanctuary that was established in 1985 as a management zone within which dugong fishing is banned (Commonwealth of Australia, 2003). Black stippled areas represent a 20 km buffer of potential anthropogenic disturbance around inhabited islands.

"p. inabited is inabited in a state of the s

Species ¹	Plant	z		Starch		WSC		IVDMD		MO		ADF		NDF		Lignin	
	component	Mean	Se	Mean	g	Mean	Se	Mean	se	Mean	Se	Mean	ŝ	Mean	Se	Mean	ŝ
OH	Above-ground	1.65	0.03	2.50	0.10	2.68	0.20	81.72	0.48	28.51	0.75	24.55	0.60	43.59	0.72	4.13	0.37
	Below-ground	0.74	0.03	3.03	0.12	2.41	0.25	87.11	0.58	33.74	0.91	30.75	0.73	38.18	0.88	4.50	0.38
	Whole plant	1.32	0.05	2.76	0.12	2.80	0.29	83.24	0.66	29.78	1.26	27.15	0.66	41.31	1.06	4.10	0.28
											i						
S	Above-ground	1.86	0.02	2.28	0.08	1.66	0.16	67.03	0.37	39.29	0.58	34.88	0.46	56.48	0.55	6.99	0.21
	Below-ground	0.66	0.02	2.39	0.08	2.44	0.16	64.96	0.39	70.11	0.61	33.16	0.48	37.84	0.58	7.46	0.23
	Whole plant	1.35	0.04	2.30	0.10	1.84	0.24	66.41	0.56	52.45	1.05	34.13	0.55	48.70	0.89	7.16	0.17
HS	Above-ground	1.39	0.02	1.99	0.07	2.06	0.14	72.24	0.32	36.31	0.50	33.18	0.40	47.07	0.48	4.48	0.20
	Below-ground	0.85	0.02	1.87	0.09	3.86	0.18	83.42	0.42	45.65	0.65	35.65	0.52	49.06	0.62	4.86	0.26
	Whole plant	1.22	0.04	1.92	0.09	2.43	0.24	75.51	0.55	38.71	1.04	34.00	0.54	48.17	0.87	4.56	0.15
																c	
SI	Above-ground	1.75	0.03	1.19	0.11	5.59	0.21	78.72	0.51	30.24	0.79	42.19	0.63	40.07	0.76	NA⁵	AN
	Below-ground	1.11	0.03	1.73	0.10	3.22	0.21	74.95	0.49	39.56	0.76	33.55	0.61	31.09	0.73	6.48	0.28
	Whole plant	1.40	0.05	1.42	0.12	4.30	0.29	75.84	0.68	35.01	1.29	38.21	0.68	35.05	1.09	ΡA	ΡA

Table 1. Mean % nutrient concentrations for above and below-ground plant fractions of the four dominant species of sub-tidal seagrass sampled in rue for the Torres Straits.

¹ (HO = *H. ovalis*, SI = *S. isoetifolium*, CS = *C. serrulata* and HS = *H. spinulosa*). ² There was not enough plant material collected to conduct an accurate test for above-ground and whole-plant lignin on *S. isoetifolium*

Figure 1. Map of Torres Strait showing the jurisdictional boundaries and spatial zones of the study area (adapted from Long and Poiner, 1997; Pitcher et al., 2004).

Received h

Figure 2. Frequencies of seagrass species encountered from 168 sub-tidal sample sites in the Torres Strait.

 \sim

.d fr.

Figure 3. Seagrass species distribution from 168 sample points across the Torres Straits. (HO = H. *ovalis*, SI = S. *isoetifolium*, CS = C. *serrulata*, HS = H. *spinulosa*, HU = H. *uninervis* (*wide*), TH = T. *hemprichii*, EA = E. *acoroides*, HD = H. *decipiens*, HC = H. *capricorni*, CR = C. *rotundata*, TC = T. *ciliatum*).

Figure 4. Percentage of sites with seagrass present (all species pooled) for each sediment category. Sediment is classified from fine (slightly gravelly sandy mud) to coarse (gravel).

Figure 5. Mean depth and range (below msl) for 11 species of seagrass present in Torres Strait subtidal waters.

Figure 6. Negative linear relationship between water depth and starch content for S. isoetifolium.

Figure 7. Plots of (A.) mean seagrass nitrogen and starch concentrations, and; (B.) mean *in-vitro* dry matter digestibility (IVDMD) and acid detergent fibre (ADF) (HO = H. *ovalis*, SI = S. *isoetifolium*, CS = C. *serrulata* and HS = H. *spinulosa*). L = leaves, stems and shoots (above ground), R = roots and rhizomes (below ground).

